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Day 1: Introduction and terminology (Text: Lessons 1, 26)

Intro/Logistics (see Canvas syllabus):

• About me

• Course structure

• Grading policy

• Homework

• Prerequisites

• Office Hours: Tuesdays 1-2PM (EH 1832) & Thursdays 4-6PM (EH B737)

Recall that a differential equation is an equation containing derivatives of one or more unknown
functions (dependent variables) with respect to one or more independent variables.

You have studied the case of one independent variable: ordinary differential equations (ODE’s).

Example: A simple ODE for an unknown function y(x) is y′′ + λ2y = 0, with general solution

y(x) = A cos(λx) +B sin(λx).

Moving forward, one should be able to recognize such solutions reflexively.

We study the alternative: a partial differential equation (PDE) is one in which the unknown(s)
depend on more than one variable, thereby involving partial derivatives.

Differential equations are essential to the modeling of physical phenomena.

Some famous PDE’s fundamental to physics:

(i) Schrodinger’s equation: single-particle quantum mechanics.

i~
∂Ψ

∂t
= − ~2

2m
∆Ψ + V (~x, t)Ψ

∆ here is the Laplacian, ∆ := ~∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

(ii) Maxwell’s equations: classical electricity and magnetism.

~∇ · ~E = ρ/ε0 ~∇× ~E = −∂
~B

∂t

~∇ · ~B = 0 ~∇× ~B = µ0
~J + µ0ε0

∂~E

∂t
(1)
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(iii) Einstein’s equation: general relativity.

Gµν =
8πG

c4
Tµν

It is helpful to introduce vocabulary classifying PDE’s, characterizing:

• Order: the highest order derivative present in the equations.

• Dimension: number of independent variables (often, specifically spatial variables).

• Number of dependent variables (unknown functions).

Multiple unknowns =⇒ multiple equations =⇒ system of PDE’s.

Systems of PDE’s are generally beyond the scope of this course.

• Structure: a PDE is linear if the dependent variables and their derivatives only appear in a
linear combination. E.g., a first-order linear PDE for the unknown u(x, y) has the form

A(x, y)ux +B(x, y)uy + C(x, y)u = D(x, y). (2)

Above,
(i) is a second-order linear PDE, spatially 3D;
(ii) is a first-order system of linear PDE’s, spatially 3D;
(iii) is a second-order system of nonlinear PDE’s on 4D spacetime.

Let us see how some of the most important PDE’s we’ll study arise from the system (1).

Example: In electrostatics, all charges are at rest and fields have settled to a steady state.

This means ~Et = ~Bt = ~J = ~0, so that the system (1) reduces to

~∇ · ~E = ρ/ε0 ~∇× ~E = ~0

~∇ · ~B = 0 ~∇× ~B = ~0

The last two of these imply that ~B = ~0 under physical boundary conditions, while ~∇ × ~E = ~0 is
equivalent1 to ~E = ~∇φ for some function φ (electric potential). The remaining equation now reads

∆φ = ρ/ε0.

This ubiquitous PDE is the Poisson equation. Away from charges, it reduces to Laplace’s equation,

∆φ = 0.

We will study both of these PDE’s in detail.

1When operating on a simply connected domain. Even when not, however, the implication still goes one way (the

important way for physicists): solving ∆φ = ρ/ε0 for φ and taking ~E = ~∇φ will give a solution for ~E.
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Example: In vacuum, where there are no charges present, one has ρ = 0 and ~J = ~0, so

~∇ · ~E = 0 ~∇× ~E = −∂
~B

∂t

~∇ · ~B = 0 ~∇× ~B = µ0ε0
∂~E

∂t

Taking the curl of the second equation and using the double-curl identity

~∇× (~∇× ~E) = ~∇(~∇ · ~E)−∆~E,

one finds

µ0ε0
∂2~E

∂t2
= ∆~E.

This is the wave equation (with speed c := (µ0ε0)−1/2), which we will also study in detail.

Similar manipulations yield the same equation for ~B.

As nearly all foundational techniques hinge upon linearity, we almost exclusively treat linear PDE’s.

It is worthwhile, then, to characterize linearity more precisely.

First, a (partial) differential operator is a mapping of an input function to an output function,
u 7→ O[u], involving (partial) derivatives of the input u.

Example: The mapping on functions u(x, y) defined by

u 7→ O[u] := u · ux (3)

is a partial differential operator.

Definition: A (partial) differential operator L is called linear provided that

L[c1u1 + c2u2] = c1L[u1] + c2L[u2]

for any input functions u1, u2 and constants c1, c2.

Note that the operator defined by (3) is nonlinear.

Definition: A DE is now called linear if it can be expressed in the form

L[u] = g

for some differential operator L and function g, often called the source.
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A linear DE is further called homogeneous if g = 0, i.e. if it reads

L[u] = 0.

Example: The PDE (2) is linear with g = D(x, y) and

L = A(x, y)
∂

∂x
+B(x, y)

∂

∂y
+ C(x, y)

Indeed, this L is the most general first-order linear partial differential operator in two variables.

The key property making linear equations so immensely convenient is the principle of superposition:

Theorem: Let L be a linear differential operator. If u1 and u2 are, respectively, solutions to the
linear DE’s L[u] = g1 and L[u] = g2, then ũ := c1u1 + c2u2 satisfies the DE

L[u] = c1g1 + c2g2.

Proof: By linearity of the operator L,

L[ũ] = L[c1u1 + c2u2] = c1L[u1] + c2L[u2] = c1g1 + c2g2.

In particular, if u1 and u2 both satisfy L[u] = 0, the so does every linear combination ũ.

The most general second-order linear PDE in two variables (x, y) reads

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

where each of A, B, C, D, E, F, and G may be functions of (x, y).

Such equations will be the primary focus of this course. There are three basic categories:

(a) Parabolic (B2 − 4AC = 0). Describe heat flow and diffusion.
Prototype: ut = uxx (heat equation).

(b) Hyperbolic (B2 − 4AC > 0). Describe vibrations and wave motion.
Prototype: utt = uxx (wave equation).

(c) Elliptic (B2 − 4AC < 0). Describe steady-state phenomena.
Prototype: uxx + uyy = 0 (Laplace’s equation).
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Day 2: Method of Characteristics (Lesson 27)

How can we construct solutions to first-order linear PDE’s?

Recall: a first-order linear PDE in two variables has the form (2). With a slight relabelling, this is

A(x, t)ux +B(x, t)ut + C(x, t)u = D(x, t). (4)

To “solve” such problems, we must establish what this means. Recall that solving a first-order ODE

y′ = f(t, y)

requires an initial condition y(t0) = y0– solutions have an arbitrary constant’s worth of freedom.

What information must we provide to solve (4)? Let us consider a very simple example.

Example:
ux + 2ut = 0

What does this equation say? Setting ~v =

(
1
2

)
, note that this equation is equivalent to

~v · ~∇u = 0.

That is, this equation states that the directional derivative of u along ~v is 0: there is a particular
direction through the xt-plane along which solutions u do not change.

The PDE effectively propagates information along this direction. In particular, we have

u(x0, t0) = u0 =⇒ u(x0 + s, t0 + 2s) = u0 ∀s ∈ R.

If we foliate the xt-plane by lines with direction ~v, called characteristics of the PDE, say

~γx0(s) = (x0 + s, 2s),

then specifying u at a single point along each characteristic ~γx0 will determine u everywhere.

x

t

Information on the black curve propagates along the blue characteristics, determining u everywhere.
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Apparently, then, we may naturally and meaningfully pose the initial value problem

ux + 2ut = 0, u(x, 0) = φ(x).

Indeed, the initial condition specifies u on each characteristic ~γx0(s) at s = 0:

u (~γx0(0)) = u(x0, 0) = φ(x0).

x

t

~γ1~γ−1

1

−1

The schematic for propagating the information in a standard IVP for this PDE.

Let us solve for u(x, t). We fix the point (x, t) and find the ~γx0 which passes through it:

(x, t) = ~γx0(s) = (x0 + s, 2s) =⇒ s = t/2, x0 = x− t/2,

so the characteristic ~γx−t/2 passes through (x, t) at s = t/2.

(x, t)

x

t

x− t/2

~γx−t/2

Hence we have
u(x, t) = u

(
~γx−t/2(t/2)

)
= u(~γx−t/2(0)) = φ(x− t/2)

Observing that φ is arbitrary, we call u(x, t) = φ(x− t/2) the general solution to this PDE.

While ODE solutions allow arbitrary constants, PDE solutions allow arbitrary functions.
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This example was simple. Mild complications in this same scheme arise for the general problem (4).

Let us add one more layer of complexity:

Example: Solve the IVP
ux + 2ut + u = x, u(x, 0) = φ(x).

Like before, and again setting ~v =

(
1
2

)
, we can recast in terms of a directional derivative:

~v · ~∇u+ u = x.

The problem apparently only involves a single derivative: morally, this is an ODE in the ~v direction.

To make this more than moral, fix x0 and consider the function f(s) := (u ◦ ~γx0)(s). Then

f ′(s) = ~γ ′x0(s) · (~∇u ◦ ~γx0)(s)
= (~v · ~∇u) ◦ ~γx0(s)
= (x− u) ◦ ~γx0(s)
= x0 + s− f(s)

That is, f(s) satisfies the simple ODE

f ′(s) + f(s) = x0 + s,

to which the general solution (using, say, the integrating factor es) is

f(s) = x0 + s− 1 + Ce−s.

To determine C, note that

x0 − 1 + C = f(0) = u (~γx0(0)) = u(x0, 0) = φ(x0),

requiring C = φ(x0) + 1− x0, and hence

f(s) = x0 + s− 1 + (φ(x0) + 1− x0) e−s.

Information propagates along characteristics as before; this computation tells us how it propagates.

In the previous example, the propagation was trivial: (u ◦ ~γx0)(s) was simply constant. More gen-
erally, it is a function of s determined by a first-order linear ODE and the initial conditions.

We may now determine u(x, t) in much the same way as before, using (x, t) = γx−t/2(t/2):

u(x, t) = u
(
~γx−t/2(t/2)

)
= (u ◦ ~γx−t/2)(t/2)

= (x− t/2) + t/2− 1 + [φ(x− t/2) + 1− (x− t/2)] e−t/2

= x− 1 + [φ(x− t/2) + 1− x+ t/2] e−t/2
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Note that we’ve simply substituted x0 = x− t/2 and s = t/2 into our solution for f(s).

The final step is to allow variable coefficients to ux and ut, adding still more complexity:

Example: Solve the IVP

tux + xut + u = x, u(x, 0) = φ(x) for x > 0.

We proceed in much the same way, recasting in terms of a directional derivative,

~v · ~∇u+ u = x,

except that the direction ~v(x, t) =

(
t
x

)
is no longer constant. Information still propagates in the

direction of ~v, i.e. along the characteristic curves ~γx0(s) everywhere tangent to ~v, defined by:

~γ ′x0(s) = ~v ◦ ~γx0(s), ~γx0(0) = (x0, 0).

More familiarly: the coordinates of ~γx0(s) = (x(s), t(s)) are determined by the ODE system IVP2,

x′(s) = vx = t,
t′(s) = vt = x,

x(0) = x0,
t(0) = 0.

The solution to this system is x(s) = x0 cosh(s), t(s) = x0 sinh(s), so that

~γx0(s) = (x0 cosh(s), x0 sinh(s)).

x

t

~γ1

1

(x, t)

x

t

~γ√x2−t2

√
x2 − t2

The schematic propagation of initial data in this IVP.

According to the characteristics, our initial data can only propagate to those (x, t) with |t| < x.

2Note that vx and vt here denote the x and t components of the vector ~v, not partial derivatives. Subscripts on
the un-bolded form of a vector variable will always refer to components in this way.
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We now proceed as in the previous example, but using this ~γx0 . Now f(s) := (u ◦ ~γx0)(s) satisfies

f ′(s) = ~γ ′x0(s) · (~∇u ◦ ~γx0)(s)
= (~v · ~∇u) ◦ ~γx0(s)
= (x− u) ◦ ~γx0(s)
= x0 cosh(s)− f(s),

so that
f ′(s) + f(s) = x0 cosh(s),

Again using the integrating factor es, one has

f(s) = x0e
−s ·

∫
es cosh(s)ds = x0e

−s ·
∫
e2s + 1

2
ds =

x0

4
(es + 2se−s) + Ce−s,

and setting
x0

4
+ C = f(0) = u (~γx0(0)) = u(x0, 0) = φ(x0)

yields C = φ(x0)− x0
4

, and hence

f(s) =
x0

4

[
es + (2s− 1)e−s

]
+ φ(x0)e−s.

To solve for u(x, t), we must again find the characteristic which passes through it:

(x, t) = ~γx0(s) = (x0 cosh(s), x0 sinh(s)) =⇒ s = tanh−1(t/x), x0 =
√
x2 − t2.

We now simply plug these expressions3 for s and x0 into our solution for f(s):

u(x, t) =

√
x2 − t2

4

[√
x+ t

x− t
+ (2 tanh−1(t/x)− 1)

√
x− t
x+ t

]
+

√
x− t
x+ t

φ
(√

x2 − t2
)

=
1

4

[
|x+ t|+

(
ln

(
x+ t

x− t

)
− 1

)
|x− t|

]
+

√
x− t
x+ t

φ
(√

x2 − t2
)

=
1

4

[
2t+ (x− t) ln

(
x+ t

x− t

)]
+

√
x− t
x+ t

φ
(√

x2 − t2
)

on the region {(x, t) : 0 ≤ |t| < x}.

One can see these examples’ evolutions of initial data by playing the t slider in this Desmos demo.

In these examples, we see the general procedure emerge (for an IVP specifying u(x, 0)):

1. Find a formula for ~γx0(s) = (x(s), t(s)) by solving the ODE system

x′(s) = vx,
t′(s) = vt,

x(0) = x0,
t(0) = 0.

3Note that tanh−1(t/x) = ln
(√

x+t
x−t

)
10
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2. Find the ODE characterizing f(s) := (u ◦ ~γx0)(s) and solve for f(s) in terms of s and x0.

3. Find the combination of x0 and s such that ~γx0(s) = (x, t) and plug into f(s) to find u(x, t).

In general, step 1 may need to be minorly adapted to the initial data (e.g. if u(x, 1) = φ(x) is given).

Note: the text frames this method as a change of coordinates under which the PDE becomes an
ODE; this is simply a matter of perspective. In our notation, the new coordinates would be (x0, s),
and the transformation between them and the original coordinates (x, t) is simply

(x0, s) 7→ (x, t) = ~γx0(s).

x

t

The (x0, s) coordinate grid from the final example. Blue curves have fixed x0, while red curves have fixed s.
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Day 3: Heat Equation Intro (Lessons 2,4)

How can we model the dynamics of temperature?

In ODE’s, we (likely) saw Newton’s law of cooling: the rate of change of an object’s temperature is
proportional to its temperature difference with the environment. If the temperature is y(t),

y′(t) = −k(y(t)− T ). (5)

About as well as one can do with a single independent variable (time), but quite crude.

If a region’s temperature u(~x, t) varies spatially and temporally, what governs its evolution?

Requires Fourier’s law: vectorial heat flux ~q ( (energy)
(time)·(area)

) is proportional to temperature gradient,

~q = −k~∇u.

Physically, the rate that heat energy crosses an infinitesimal surface area element ~dA is

~q · ~dA = −k~∇u · ~dA.

The quantity k ( (energy)
(temperature)·(time)·(length)

) is the medium’s thermal conductivity. Equivalently,

(heat flux in direction n̂) = n̂ · ~q = −kn̂ · ~∇u,

proportional to the temperature’s rate of change in the n̂ direction. Since this rate of change is

n̂ · ~∇u
∣∣∣∣
~x0

=
d

ds
[u(~x0 + sn̂, t)]

∣∣∣∣
s=0

= lim
h→0

u(~x0 + hn̂, t)− u(~x0, t)

h
,

this intuitively jives with Newton’s law: heat flow along n̂ arises due to a temperature difference.

What does Fourier’s Law imply about temperature dynamics?

Consider the total heat energy in a bounded 3D region U ⊂ R3 (with smooth boundary ∂U):

H(t) =

∫
U

cρu(~x, t)dV,

with c the medium’s specific heat ( (energy)
(temperature)·(mass)

) and ρ its mass density. On one hand4,

dH

dt
=

d

dt

[∫
U

cρu(~x, t)dV

]
=

∫
U

cρut(~x, t)dV.

But since energy is conserved: if energy isn’t generated in U , the change must flow across ∂U5,

dH

dt
= −

∫
∂U

~q · ~dA =

∫
∂U

k~∇u · ~dA =

∫
U

(k∆u)dV (6)

4A mathematician worries whether interchanging the derivative and integral is permissible. This is generally a
nontrivial analysis question, but it goes through here since U is bounded and we take u to be smooth.

5Recall the divergence theorem: ∫
∂U

~F · ~dA =

∫
U

(~∇ · ~F)dV
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H =

∫
U

(cρu)dV

U

~q⊥

x

y

Hence we’ve found that ∫
U

[cρut − k∆u] dV = 0. (7)

Applies to any bounded region U , no matter how large, small, or (smoothly) misshapen.

Since the integral (7) is 0 for all such U , the integrand (cρut − k∆u) must be 06:

cρut − k∆u = 0.

Rearranging and setting α2 := k
cρ

(thermal diffusivity), we’ve arrived at the heat equation:

ut = α2∆u (8)

This PDE governs the dynamics of temperature in a uniform medium.

Note that this PDE is linear and homogeneous, L[u] = 0, with L = (∂t − α2∆). Some variations:

• Heat sources: if heat is generated in U at density rate f(~x, t) ( (energy)
(volume)·(time)

), then (6) becomes

dH

dt
=

∫
U

(k∆u+ f(~x, t))dV,

and (8) is now

ut = α2∆u+ F (~x, t) (9)

with F (~x, t) = 1
cρ
f(~x, t). This reads L[u] = F : heat sources add an inhomogeneous term.

• Fick’s Law of diffusion: the flux ~J of diffusing particles is proportional to the density gradient,

~J = −D~∇ρ,

with D the diffusion coefficient. A relabelling of variables in the above argument yields

ρt = D∆ρ

(using conservation of particle number), so the heat equation also describes diffusion.

6This follows so long as the integrand is (reasonably) assumed continuous.
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• Convection: if the medium is flowing with constant velocity ~v, heat energy (or particle num-
ber) in U can also change due to the medium’s flow across the boundary,

(rate energy is carried out of U) =

∫
∂U

cρu~v · ~dA =

∫
U

cρ~∇ · (u~v)dV =

∫
U

(cρ~v · ~∇u)dV

Hence (6) gains this as an additional term,

dH

dt
=

∫
U

(k∆u− cρ~v · ~∇u)dV,

and ultimately (8) becomes the convection-diffusion equation

ut + ~v · ~∇u = α2∆u (10)

From Day 2: if α→ 0, this simply translates initial data at velocity ~v, as one would expect.

• In a nonuniform medium, k may vary spatially. In a nonlinear medium, k may depend on the
temperature u. You will derive the appropriate modifications to (8) in HW1.

• 1D: In a thin rod, u is nearly constant on cross-sections, so u(~x, t)→ u(x, t) and (8) becomes

ut = α2uxx, (11)

the 1D heat equation. Observe that this says

ut ∝ uxx = lim
h→0

u(x+ h, t)− 2u(x, t) + u(x− h, t)
h2

ut ∝ lim
h→0
− 2

h2

[
u(x, t)− u(x+ h, t) + u(x− h, t)

2

]
.

In brackets is the difference between u(x, t) and its mean value at nearby points7. Compare (5).

Graphically, (11) says that temperature changes more quickly in response to strong concavity.

u(x, t)

ut(x, t)

x

u

7In fact, denoting by ū the average of u on a sphere of radius r centered at ~x, one has in any dimension n that

ū = u(~x) +
∆u(~x)

2n
r2 +O(r3).

In this sense, ∆ measures a function’s deviation from its mean, and the heat equation reflects Newton’s law of cooling.
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A new consideration arises in 1D: does the rod lose heat to its 3D environment? If not, we
say it is laterally insulated, and (11) applies. If so, Newton’s law suggests a simple correction,

ut = α2uxx − β(u− u0),

where u0 is the environment temperature.

In practice, one may need several of the above variations’ correction terms simultaneously.
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Day 4: IBVP’s and Separation of Variables (Lessons 2,3,5)

How do we pose temperature evolution problems?

Given our PDE, say (8),what more must we specify to uniquely determine a solution u(~x, t)?

Intuitively: given a cubic room, say 0 < x, y, z < 3, what must we know to predict its temperature?

Initial data u(~x, 0) is necessary, but insufficient. Are there windows? Is it cold or warm outside?

Namely, we need conditions at the boundary of our room. We can’t hope to predict u(~x, t) otherwise.

In addition to the PDE (8) and initial condition u(~x, 0), then, we must constrain the six functions

u(x, y, 0, t)
u(x, y, 3, t)

for 0 < x, y < 3,
u(x, 0, z, t)
u(x, 3, z, t)

for 0 < x, z < 3,
u(0, y, z, t)
u(3, y, z, t)

for 0 < y, z < 3.

x

y

z

~0

u(x, y, 3, t)

u(3, y, z, t)

u(x, 3, z, t)

One can imagine placing sensors on a boundary (say, the front surface) and applying heating
elements as needed to enforce a desired boundary temperature. This amounts to directly specifying

u(x, y, 3, t) = g(x, y, t).

Another surface (say, the top) may be thickly covered in insulating material, so virtually no heat
transfers across it. This requires ~q · n̂ = 0, with n̂ the boundary’s unit normal. By Fourier’s law,

∂u

∂n
(x, 3, z, t) = uy(x, 3, z, t) = 0.

Alternatively, heating elements may be set up to transfer heat at a prescribed rate, specifying

∂u

∂n
(x, 3, z, t) = uy(x, 3, z, t) = g(x, 3, z, t).
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Finally, a third surface (say, the rightmost) may be a glass window exposed to an environment
temperature u0(t). Newton’s law suggests that ~q · n̂ should be proportional to the difference u−u0:

k
∂u

∂n
(3, y, z, t) = −h [u(3, y, z, t)− u0(t)] ,

with h the boundary’s heat-exchange coefficient.

In summary, the most common and natural boundary conditions are:

• u = g (specified boundary temperature).

• ∂u
∂n

= g (heat flow across boundary specified).

• ∂u
∂n

+ λu = g (surrounding environment temperature is specified).

Example: Consider a laterally insulated copper rod situated at 0 < x < 200 (measured in cm)
with an initial temperature of 0◦C. Suppose the end at x = 0 is perfectly insulated, while the end
at x = 200 is immersed in water at 20◦C. The rod’s temperature u(x, t) satisfies

ut = α2uxx,
ux(0, t) = 0,
ux(200, t) = −h

k
[u(200, t)− 20] , 0 ≤ t <∞

u(x, 0) = 0, 0 < x < 200

For copper, α2 ≈ 1.16 cm2

s
and k ≈ 0.93 cal

cm-s-C
. h ( cal

s-C
) generally must be found empirically.

This is a typical initial boundary value problem (IBVP) containing all the information needed to
obtain a unique solution in parabolic-type problems.

Similarly to DE’s, we will call a boundary condition linear if it has the form

αu+ β
∂u

∂n
= g

(with α, β constants) and homogeneous if g = 0. Linear BC’s also enjoy a superposition principle.

As seen in the above discussion, linear boundary conditions are apparently quite natural.

How can we construct solutions to IBVP’s?

To solve these, we now develop one of the most powerful techniques for understanding linear PDE’s.

Example: We model a laterally insulated rod of length 1 with temperature fixed to 0 at the ends.

ut = α2uxx,
u(0, t) = 0,
u(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = sin(πx), 0 ≤ x ≤ 1.

(12)

17



An interesting observation about this initial condition:

uxx(x, 0) = −π2 sin(πx) = −π2u(x, 0),

so that, at least at t = 0, u seems to satisfy the simple ODE in t,

ut = −(πα)2u. (13)

Not too informative at a single t. If it (miraculously) holds at all t, one has the simple solution

u(x, t) = u(x, 0)e−(πα)2t = sin(πx)e−(πα)2t.

Remarkably: this function u(x, t) keeps uxx = −π2u consistent, so

u(x, t) = sin(πx)e−(πα)2t

is a solution to (12) for which (13) does always hold.

The essential feature that preserved uxx = −π2u was that the solution u(x, t) = sin(πx)e−(πα)2t

separated into a product of a function of x and a function of t.

In general, the rod above may have an arbitrary initial temperature profile u(x, 0) = φ(x):

ut = α2uxx,
u(0, t) = 0,
u(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = φ(x), 0 ≤ x ≤ 1.

(14)

We eventually expect u(x, t)→ 0. How does the transition from φ(x) look? How long does it take?

This requires knowing u(x, t). Generally, solutions may be quite complicated.

The example suggests we might reduce to ODE’s by seeking solutions which separate,

u(x, t) = X(x)T (t).

This is the separation of variables ansatz. Plugging this ansatz into the PDE gives

X(x)T ′(t) = ut = α2uxx = α2X ′′(x)T (t).

The crucial step to fully “separate” the variables in the PDE is dividing through by X(x)T (t),

T ′(t)

α2T (t)
=
X ′′(x)

X(x)

This equation states that the LHS and RHS are the same function of (x, t). From the LHS, this
function is independent of x. From the RHS, it is independent of t. Hence it must be constant! Say,

T ′(t)

α2T (t)
= k =

X ′′(x)

X(x)
.

18



A priori, k ∈ R may be any number. This yields two ODE’s for X(x) and T (t),

X ′′ − kX = 0,

T ′ − kα2T = 0.

Solving, these ODE’s indicate that any function of the forms

u(x, t) =
[
A cosh

(√
kx
)

+B sinh
(√

kx
)]
ekα

2t, k > 0

u(x, t) =
[
A cos

(√
−kx

)
+B sin

(√
−kx

)]
ekα

2t, k < 0

solves our PDE. How many also satisfy the boundary conditions u(0, t) = u(1, t) = 0?

These boundary conditions require X(0) = X(1) = 0. Recall from HW0 that the BVP

y′′ − λ2y = 0, y(0) = y(1) = 0

only admits y(x) = 0. To find a nontrivial X(x), then, we must take k < 08, say k → −λ2:

X ′′ + λ2X = 0, X(0) = X(1) = 0,

T ′ + (λα)2T = 0. (15)

For which λ does the BVP for X(x) admit nontrivial solutions? As seen above, one must have

X(x) = A cos(λx) +B sin(λx),

and imposing 0 = X(0) = A and 0 = X(1) = B sin(λ) requires sin(λ) = 0, or λ = nπ for n ∈ Z.

Hence for each λ = nπ, n ∈ Z+, we have Xn(x) = B sin(nπx). Correspondingly, Tn(t) = e−(πnα)2t.

For each n, then, we have a solution un(x, t) to the PDE respecting the boundary conditions,

un(x, t) = Bn sin(nπx)e−(nπα)2t.

These are all of the separable solutions to the PDE matching the boundary conditions.

8Alternatively, we might take k < 0 on physical grounds since we expect u(x, t)→ 0 at large t.
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Day 5: Separation of Variables and Fourier Series (Lessons 5,11)

How can we leverage separable BVP solutions to solve any IBVP?

We saw above that all separable solutions to the BVP in (14) were

un(x, t) = Bn sin(nπx)e−(nπα)2t.

This is just dandy if u(x, 0) ∝ sin(nπx), but what does it have to do with an arbitrary φ(x)?

Superposition now shines. Since both the PDE and BC’s in (14) are homogeneous, if u1 and u2

each satisfy the BVP, so does any combination c1u1 + c2u2. More broadly, any combination∑
n

Bnun(x, t) =
∑
n

Bn sin(nπx)e−(nπα)2t (16)

will solve the BVP9. In the full IBVP (14), this allows us to match any initial condition of the form

φ(x) =
∑
n

Bn sin(nπx) (17)

for any collection of constants Bn.

Example: The solution to the IBVP

ut = α2uxx,
u(0, t) = 0,
u(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = 1

2
sin(πx)− 3

2
sin(3πx) + sin(8πx), 0 ≤ x ≤ 1.

is simply

u(x, t) =
1

2
sin(πx)e−(πα)2t − 3

2
sin(3πx)e−(3πα)2t + sin(8πx)e−(8πα)2t

u(x, 0)

x

u

9When verifying (16) satisfies the PDE ut = α2uxx as an infinite sum, a mathematician worries whether inter-
changing the derivatives and sum is permissible. This is generally a nontrivial analysis question which we won’t pay
much heed. In our setting, it will work due to the fast convergence of the sum at any t > 0, thanks to the e−(nπα)

2t.
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Some snapshots of this evolution are shown above. See also this Desmos demo.

It may seem that (17) is a rather restrictive assumption, but it was a remarkable insight of Fourier
that there is a sense in which it covers all (well-behaved) functions φ(x) on [0, 1].

To begin to see this, let us suppose that our function φ(x) could be expanded in this way,

φ(x) =
∞∑
n=1

Bn sin(nπx). (18)

How could we find the numbers Bn?

This can be done by leveraging the orthogonality of the function family {sin(nπx)} on (0, 1):

∫ 1

0

sin(nπx) sin(mπx)dx =
1

2
(1− δn,0)δn,m =


1
2

n = m > 0

0 n = m = 0

0 n 6= m

You will verify this in HW2. Multiplying (18) by sin(mπx) and integrating, we find10

∫ 1

0

φ(x) sin(mπx)dx =

∫ 1

0

[
∞∑
n=1

Bn sin(nπx) sin(mπx)

]
dx

=
∞∑
n=1

Bn

[∫ 1

0

sin(nπx) sin(mπx)dx

]
=
∞∑
n=1

1

2
Bnδn,m =

1

2
Bm

That is, if the expansion (18) exists, the coefficients Bn must be given by

Bn = 2

∫ 1

0

φ(x) sin(nπx)dx (19)

The series

S(x) :=
∞∑
n=1

Bn sin(nπx)

with coefficients (19) is the Fourier sine series for φ(x) on 0 ≤ x ≤ 1.

Example: Consider the function φ(x) = x(1− x). It is a straightforward procedure to compute

Bn = 2

∫ 1

0

φ(x) sin(nπx)dx = 2

∫ 1

0

(x− x2) sin(nπx)dx

10A mathematician worries whether interchanging the integral and the infinite sum is permissible. This is generally
a nontrivial analysis question which we won’t pay much heed. If this bothers you, it may bring you peace of mind to
know that Lebesgue’s dominated convergence theorem ensures that it works here so long as

∑∞
n=1 |Bn| converges.
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=
2

nπ

[
−(x− x2) cos(nπx)

∣∣1
0

+

∫ 1

0

(1− 2x) cos(nπx)dx

]
=

2

(nπ)2

[
(1− 2x) sin(nπx)

∣∣1
0

+ 2

∫ 1

0

sin(nπx)dx

]
=

4

(nπ)3
[− cos(nπx)]

∣∣1
0

= − 4

(nπ)3
[cos(nπ)− 1]

=
4

(nπ)3
[1− (−1)n] .

That is, we’ve found

Bn =

{
8

(nπ)3
n odd

0 n even

This suggests: if φ(x) = x(1− x) can be expanded as in (18), then the expansion must be

S(x) =
8

π3

∞∑
n=0

sin((2n+ 1)πx)

(2n+ 1)3

That is a big if, however: is it actually true that φ(x) = S(x)?

See this Desmos demo. Shown are φ(x), the Nth partial sum SN(x), and 50 · (φ(x)− SN(x)).

This example is suggestive, but when do we know that φ(x) = S(x)?

Before establishing this, we consider a slightly different IBVP:

Example: We model a laterally insulated rod of length 1, perfectly insulated at the ends.

ut = α2uxx,
ux(0, t) = 0,
ux(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = φ(x), 0 ≤ x ≤ 1.

(20)

You will show in HW2 that all separable solutions to the BVP are

un(x, t) = An cos(nπx)e−(nπα)2t, n = 0, 1, 2, . . .

It is also an interesting question, then, whether an arbitrary function φ(x) on [0, 1] may be written

φ(x) =
A0

2
+
∞∑
n=1

An cos(nπx). (21)

As before, one may use the orthogonality of the function family {cos(nπx)},

∫ 1

0

cos(nπx) cos(mπx)dx =
1

2
(1 + δn,0)δn,m =


1
2

n = m 6= 0

1 n = m = 0

0 n 6= m,
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to deduce that, if an expansion (21) exists, the coefficients must be given by

An = 2

∫ 1

0

φ(x) cos(nπx)dx (22)

The series

C(x) :=
A0

2
+
∞∑
n=1

An cos(nπx)

with coefficients (22) is called the Fourier cosine series for φ(x) on 0 ≤ x ≤ 1.
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Day 6: Fourier Series (Lesson 11)

Do Fourier Series converge to the original function?

Both S(x) and C(x) arise as special cases of the more general Fourier series of a periodic function.

Given a periodic function f(x) with period 2L, one seeks to represent it as a combination of sines
and cosines with compatible periods, i.e. drawn from the set

{sin(nπx/L), cos(nπx/L)}.

Such a representation would generally have the form

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
Similarly to before, one can straightforwardly show the orthogonality relations (n,m ≥ 0)∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx = L(1− δn,0)δn,m,∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx = L(1 + δn,0)δn,m,∫ L

−L
sin
(nπx
L

)
cos
(mπx

L

)
dx = 0,

and these imply that, if an expansion as above exists, then the coefficients an and bn must be

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx (23)

The series

F (x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
(24)

with these an and bn is called the Fourier series for f(x).

Example: Consider the periodic function given by f(x) = x on [−L,L). This is the sawtooth wave:

−5L

−3L −L L 3L 5L

L

x

f(x)
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We compute

an =
1

L

∫ L

−L
x cos

(nπx
L

)
dx = 0

(how was this done immediately?), and

bn =
1

L

∫ L

−L
x sin

(nπx
L

)
dx

=
2

L

∫ L

0

x sin
(nπx
L

)
dx

=
2

L
· L
nπ

[
−x cos

(nπx
L

) ∣∣∣∣L
0

+

∫ L

0

cos
(nπx
L

)]
=

2L

nπ
(−1)n+1

Hence one has

F (x) =
2L

π

∞∑
n=1

(−1)n+1

n
sin
(nπx
L

)
=

2L

π

[
sin
(πx
L

)
− 1

2
sin

(
2πx

L

)
+

1

3
sin

(
3πx

L

)
− · · ·

]
We may plot the partial sums FN(x) (see this Desmos plot with L = 1):

−3L

−L L
3L

L

x

F10(x)

Such plots are suggestive, but is it true that F (x) = f(x)? A few values:

F (0) =
2L

π

∞∑
n=1

(−1)n+1

n
sin(0) = 0 = f(0) �

F (L/2) =
2L

π

[
sin
(π

2

)
− 1

2
sin (π) +

1

3
sin

(
3π

2

)
− · · ·

]
=

2L

π

∞∑
k=0

(−1)k

2k + 1

=
2L

π
tan−1(1) =

2L

π
· π

4
=
L

2
= f(L/2) �

F (L) =
2L

π

∞∑
n=1

(−1)n+1

n
sin(nπ) = 0 6= −L = f(L) �
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This last result is perhaps not so surprising, as x = L is a point of discontinuity for f(x).

Note: however many terms one includes in F (x) for φ(x) = x, the partial sums FN(x) always
sharply oscillate and “overshoot” φ(x) near x→ L. This is known as the Gibbs phenomenon.

The Gibbs phenomenon is related to the failure of the Fourier series to converge uniformly.

The most intuitively natural notion of convergence is pointwise convergence, meaning

lim
N→∞

FN(x0) = f(x0) ⇐⇒ lim
N→∞

|FN(x0)− f(x0)| = 0

at each x0. Meanwhile, uniform convergence means

lim
N→∞

max
x

(|FN(x)− f(x)|) = 0.

Both precisely when F (x) = f(x) and the strength of the convergence has been widely studied.

There are many results establishing different notions of convergence under varying conditions.

The following result establishes pointwise convergence under suitable conditions:

Theorem (Fourier Convergence): If a periodic, (locally) integrable function f is differentiable at a
point x0, then

F (x0) = f(x0).

Moreover, if f has a jump discontinuity at x0 with left- and right-hand limits

lim
x→x−0

f(x) = l, lim
x→x+0

f(x) = r

and the left- and right- hand derivatives of f exist at x0, then

F (x0) =
l + r

2

In the example, each discontinuity (x0 = kL) has l = L, r = −L, and F (x0) = (l + r)/2 = 0.

On the convergence rate of Fourier series, one has:

Theorem: If a periodic function f(x) is piecewise smooth with jump discontinuities first appearing
in the kth derivative, then

|an|, |bn| <
C

nk+1

The smoother f(x) is, then, the faster its Fourier series converges.
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In the example, f(x) itself was piecewise discontinuous (k = 0), and indeed bn ∼ 1/n.

There, F (x) reduced to S(x) because f(x) was odd. F (x) similarly reduces to C(x) if f(x) is even.

Any φ(x) on [0, 1] in (14), (20) can extend to an odd fo(x) or even fe(x), periodic with period 2.

1 x

φ(x)
−3 −2 −1 1 2 3 x

fe(x)

−3

−1 1 3−2 2 x

fo(x)

C(x), S(x) are built from φ(x). For the even fe(x): Fe(x) = C(x). For the odd fo(x): Fo(x) = S(x).

In this way, questions about S(x) and C(x) on [0, 1] reduce to questions about F (x) on [−1, 1].

In particular, the theorems apply to the series S(x) and C(x) built to solve IBVP’s.

Hence, we can solve (14) and (20) with effectively any reasonable φ(x) via separation of variables.

Example: We can construct the solution to the IBVP

ut = α2uxx,
u(0, t) = 0,
u(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = x, 0 ≤ x ≤ 1,

by expanding φ(x) = x in its Fourier sine series on [0, 1], as the separable solutions to the BVP are

un(x, t) = Bn sin(nπx)e−(nπα)2t.

From the last example,

φ(x) =
2

π

∞∑
n=1

(−1)n+1

n
sin (nπx) ,

so the solution to the IBVP is simply

u(x, t) =
2

π

∞∑
n=1

(−1)n+1

n
sin (nπx) e−(nπα)2t

To visualize, hit play on the s slider in this Desmos demo.
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Day 7: Sturm-Liouville Theory (Lesson 7)

How can we solve more general homogeneous IBVP’s?

Fourier series are powerful and arise in the canonical IBVP’s, but they are not universal.

Example Consider a laterally insulated rod with temperature fixed to 0 on one end and submerged
in water at temperature 0 on the other. The appropriate IBVP is

ut = α2uxx,
u(0, t) = 0,

ux(1, t) + hu(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = φ(x), 0 ≤ x ≤ 1,

Since we have not modified our PDE, separation of variables plays out largely similar to before:

u(x, t) = X(x)T (t) =⇒ X(x)T ′(t) = α2X ′′(x)T (t) =⇒ T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= −λ2,

giving the ODE T ′ + (αλ)2T = 0 and the BVP

X ′′ + λ2X = 0, X(0) = 0, X ′(1) + hX(1) = 0.

Hence X(x) = A cos(λx) +B sin(λx), and the BC’s impose

0 = X(0) = A, 0 = X ′(1) + hX(1) = B (λ cos(λ) + h sin(λ)) ,

so that nontrivial solutions to the BVP only arise for those λ values satisfying

λ cos(λ) + h sin(λ) = 0 ⇐⇒ tan(λ) = −λ/h.

tan(λ)

−λ/h

λ

π 2π 3π 4π

λ1

λ2

λ3

λ4

There is an infinite sequence λn of solutions, λ1 < λ2 < λ3 < · · · with λn →∞, and associated

Xn(x) = sin(λnx).

While we cannot write down a formula for λn, we have an infinite family of separable solutions
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un(x, t) = Cn sin(λnx)e−(λnα)2t

like before, out of which the IBVP solution could be built if one could expand

φ(x) =
∞∑
n=1

Cn sin(λnx).

x

Xn(x) = sin(λnx)

1

x

sin(nπx)

1
x

cos(nπx)

1

Sines are involved, but this is distinctly not the Fourier sine series, nor any kind of Fourier series.

Even so, the family {sin(λnx)}n>0 does enjoy a (slightly less trivial) orthogonality property:∫ 1

0

sin(λnx) sin(λmx)dx =

(
1

2
− sin(2λn)

4λn

)
δn,m,

which can be used deduce that the above coefficients Cn would have to be.

Cn =
4λn

2λn − sin(2λn)

∫ 1

0

φ(x) sin(λnx)dx.

One can see (approximate) convergence to φ(x) = x and evolution of u(x, t) in this Desmos demo.

While this problem was not reducible to Fourier series, a very similar pattern emerged.

Did we get lucky? How broad are these patterns?

When one solves a spatially 1D heat-type (see HW3) PDE + BC’s combo (each linear and homo-
geneous) on a ≤ x ≤ b via separation of variables, one obtains a BVP for X(x) of the form

(p(x)y′)′ − q(x)y + λw(x)y = 0

α1y(a) + β1y
′(a) = 0

α2y(b) + β2y
′(b) = 0 (25)
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This is a Sturm-Liouville BVP: regular if p(x), w(x) > 0 on a ≤ x ≤ b and p, p′, q, w are continuous.

Defining the linear differential operator L by

L[y] =
1

w(x)
[−(p(x)y′)′ + q(x)y] ,

we see that the Sturm-Liouville ODE is equivalent to

L[y] = λy.

This is an eigenvalue problem, posed on the space of functions on [a, b] satisfying the BC’s.

Nontrivial solutions y(x) are called eigenfunctions, and the associated λ is called an eigenvalue.

Example: The prototypical Sturm-Liouville problems are those we’ve seen in our IBVP’s leading
to Fourier series:

X ′′ + λX= 0, X(0) = 0, X(1)= 0,

Y ′′ + λY= 0, Y ′(0) = 0, Y ′(1)= 0.

These had p(x) = w(x) = 1 and q(x) = 0. They admit an infinite sequence of eigenvalues

λ1 < λ2 < λ3 < · · · , lim
n→∞

λn =∞

(given by (nπ)2) with eigenfunctions

Xn(x) = sin(nπx), Yn(x) = cos(nπx).

These families of eigenfunctions each enjoyed orthogonality relations,∫ 1

0

Xn(x)Xm(x)dx ∝ δn,m,

∫ 1

0

Yn(x)Ym(x)dx ∝ δn,m,

and any “nice” (see the theorem on Day 6) function φ(x) on (0, 1) could be expanded

φ(x) =
∑
n

BnXn(x) =
∑
n

AnYn(x).

Outside of explicit formulas, all of these properties generalize to any regular Sturm-Liouville BVP.

On the space of real-valued functions on [a, b] satisfying the BC’s in (25), define the inner product

〈f, g〉 :=

∫ b

a

f(x)g(x)w(x)dx.

We say that f and g are orthogonal (with respect to the weight function w(x)) if 〈f, g〉 = 0.

We demonstrate an essential property of the differential operator L on this space:

〈f, L[g]〉 − 〈L[f ], g〉 =

∫ b

a

f(x) [−(p(x)g′(x))′ + q(x)g(x)] dx

−
∫ b

a

g(x) [−(p(x)f ′(x))′ + q(x)f(x)] dx
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=

∫ b

a

[g(x)(p(x)f ′(x))′ − f(x)(p(x)g′(x))′] dx

=

∫ b

a

d

dx
[p(x) (f ′(x)g(x)− f(x)g′(x))] dx

= p(x) (f ′(x)g(x)− f(x)g′(x))

∣∣∣∣b
a

= 0

One should check that the last step follows from f and g satisfying the BC’s in (25). We’ve found

〈f, L[g]〉 = 〈L[f ], g〉,

and L is therefore said to be self-adjoint. With this, we may readily conclude

Theorem: Eigenfunctions with distinct eigenvalues are orthogonal.

Proof. If eigenfunctions φ1, φ2 of (25) have eigenvalues λ1 6= λ2, then

0 = 〈φ1, L[φ2]〉 − 〈L[φ1], φ2〉 = 〈φ1, λ2φ2〉 − 〈λ1φ1, φ2〉 = (λ2 − λ1)〈φ1, φ2〉.

Since λ2 − λ1 6= 0, we must have 〈φ1, φ2〉 = 0.

In the computation leading to self-adjointness above, we found

w(x)(fL[g]− L[f ]g) =
d

dx
[p(x) (f ′(x)g(x)− f(x)g′(x))]

This can also be leveraged to deduce that an eigenvalue has only one independent eigenfunction:

Theorem Eigenfunctions with the same eigenvalue are multiples of each other.

Proof. If φ1 and φ2 have the same eigenvalue λ, then

d

dx
[p(x) (φ′1(x)φ2(x)− φ1(x)φ′2(x))] = w(x)(φ1L[φ2]− L[φ1]φ2) = w(x)(λφ1φ2 − λφ1φ2) = 0

That is, the quantity
p(x) [φ′1φ2 − φ1φ

′
2]

is constant. The BC’s impose that this is zero at a and b, so it is zero everywhere.

Recall from ODE’s that W (x) := φ′1φ2−φ1φ
′
2 is the Wronskian of φ1 and φ2, and W (x) ≡ 0 implies

that φ1 is a constant multiple of φ2.

The analogue to Fourier series is beginning to emerge. It is completed by the following result, whose
proof is (well) beyond this course.
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Theorem: A regular Sturm-Liouville BVP (25) admits an infinite sequence of eigenvalues

λ1 < λ2 < λ3 < · · · , lim
n→∞

λn =∞

with associated eigenfunctions φn. Any continuously differentiable φ(x) on [a, b] may be expanded

φ(x) =
∞∑
n=1

Cnφn(x),

converging pointwise on a < x < b, where Cn is given (from the orthogonality relation) by

Cn =
〈φ, φn〉
〈φn, φn〉

=

∫ b
a
φ(x)φn(x)w(x)dx∫ b
a
φ2
n(x)w(x)dx

If φ(x) also satisfies the BC’s, the series is also guaranteed to converge at x = a, b.

Later, we’ll see irregular SL BVP’s, wherein these properties are not automatically guaranteed.
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Day 8: Inhomogoneous IBVP’s (Lessons 6)

How can we handle inhomogeneous problems?

Our strategies so far have hinged on linear combinations of BVP solutions remaining solutions, and
this required the BVP to be homogeneous. Inhomogeneous problems require further ingenuity.

First: to what extent can inhomogeneous problems be reduced to homogeneous ones?

Would like to draw on the superposition principle like in ODE’s, where one often uses the schematic

(general solution) = (homogeneous solution) + (particular solution). (26)

Somewhat complicated by having two sources of inhomogeneity: both the PDE and the BC’s.

Example: Consider a laterally insulated rod whose two ends are kept at temperatures k1, k2:

ut = α2uxx,
u(0, t) = k1,
u(1, t) = k2, 0 ≤ t <∞,
u(x, 0) = φ(x), 0 ≤ x ≤ 1.

Separable solutions exist, but are not be useful because linear combinations do not respect the BC’s.

We could solve this with homogeneous BC’s u(0, t) = u(L, t) = 0, so we seek a decomposition (26).

How can we construct a particular solution? If it exists, the steady-state is an ideal candidate.

Recall from HW2: the steady-state is a BVP solution u(x, t) = U(x). Here, U(x) solves the BVP

U ′′(x) = 0, U(0) = k1, U(1) = k2,

so the graph of U(x) must be the line connecting (0, k1) and (1, k2) in the xu plane,

U(x) = k1(1− x) + k2x. (27)

k1

k2

1

U(x)

x

u

Defining w(x, t) := u(x, t)− U(x), we may easily compute

wt = ut, wxx = uxx − U ′′ = uxx, w(0, t) = w(1, t) = 0, w(x, 0) = φ(x)− U(x),
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so w solves the IBVP
vt = α2vxx,

v(0, t) = 0,
v(1, t) = 0, 0 ≤ t <∞,
v(x, 0) = φ(x)− U(x), 0 ≤ x ≤ 1.

As this is homogeneous, we may readily solve by expanding φ(x)− U(x) in a Fourier sine series.

Once v(x, t) is known, we simply add back the steady-state (27), u(x, t) = v(x, t) + U(x).

Snapshots of a typical solution are shown below. See also this Desmos demo.

φ(x)

U(x)

x

u

The above only works if sources and BC’s have no explicit time dependence, so a steady-state exists.

Generally, we cannot entirely eliminate inhomogeneity. Consider the IBVP with general linear BC’s:

ut = α2uxx,
α1u(0, t) + β1ux(0, t) = g1(t),
α2u(1, t) + β2ux(1, t) = g2(t), 0 ≤ t <∞,

u(x, 0) = φ(x), 0 ≤ x ≤ 1.

Given the time-dependent BC’s, a fully steady-state solution will not exist.

We may still take inspiration from (27), however, and subtract off an analogous component,

U(x, t) = A(t)(1− x) +B(t)x,

with A(t) and B(t) chosen so that U(x, t) solves the BC’s. This imposes the constraints

g1(t) = α1A(t) + β1(B(t)− A(t)),

g2(t) = α2B(t) + β2(B(t)− A(t)),

which may be straightforwardly solved for A(t), B(t) given (almost) any values of αi, βi.
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Knowing A(t) and B(t), we define as before v(x, t) := u(x, t)−U(x, t), which now solves the IBVP

vt = α2vxx − Ut,
α1v(0, t) + β1vx(0, t) = 0,
α2v(1, t) + β2vx(1, t) = 0, 0 ≤ t <∞,

v(x, 0) = φ(x)− U(x, 0), 0 ≤ x ≤ 1.

We have managed to homogenize the BC’s, but destroyed the homogeneity of the PDE.

Example: The natural case α1 = α2 = 1 and β1 = β2 = 0 in the above simply yields

A(t) = g1(t), B(t) = g2(t),

and the IBVP for v becomes

vt = α2vxx − g′1(t)(1− x)− g′2(t)x,
v(0, t) = 0,
v(1, t) = 0, 0 ≤ t <∞,
v(x, 0) = φ(x)− g1(0)(1− x) + g2(0)x, 0 ≤ x ≤ 1.

You will treat the case α1 = α2 = 0, β1 = β2 = 1 in HW4.

The moral: we generally cannot arrange for homogeneity of both the PDE and BC’s, but we can
always at least ensure one is homogeneous. We will prefer homogeneous BC’s.
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Day 9: Inhomogeneous IBVP’s: Eigenfunction Expansion (Lesson 9)

How can we construct solutions to inhomogeneous IBVP’s?

Consider the broad class of heat-type problems with homogeneous BC’s:

ut = 1
w(x)

[(p(x)ux)x − q(x)u] + f(x, t),

α1u(0, t) + β1ux(0, t) = 0,
α2u(1, t) + β2ux(1, t) = 0, 0 ≤ t <∞,

u(x, 0) = φ(x), 0 ≤ x ≤ 1.

(28)

We develop the eigenfunction expansion method, similar to variation of parameters in ODE’s.

As in ODE’s, the essential first step is to consider the fully homogeneous case, f → 0.

In that case, HW3 shows: separating u(x, t) = X(x)T (t) yields the standard SL BVP (25) for X(x).

The homogeneous BVP then admits separable solutions un(x, t) = φn(x)e−λnt, and more generally

uh(x, t) =
∑
n

Cnφn(x)e−λnt. (29)

Returning to the full problem (28), SL theory ensures we may expand f(x, t) in the φn at each t:

f(x, t) =
∑
n

fn(t)φn(x)

The eigenfunction expansion method takes as an ansatz the form (29), but promoting Cn → Cn(t),

u(x, t) =
∑
n

Cn(t)φn(x)e−λnt

Substituting this into the PDE (and using that the φn are SL BVP eigenfunctions) yields∑
n

C ′n(t)φn(x)e−λnt =
∑
n

fn(t)φn(x)

=⇒
∑
n

(
C ′n(t)e−λnt − fn(t)

)
φn(x) = 0

=⇒ C ′n(t)e−λnt − fn(t) = 0,

by orthogonality of {φn}. That is, we’ve found

Cn(t) =

∫
fn(t)eλntdt

Schematically, our ansatz reduces the PDE to an infinitum of ODE’s, each characterizing the
response to the source component fn(t)φn(x). Finally, we impose the IC to fully determine Cn(t):

φ(x) = u(x, 0) =
∑
n

Cn(0)φn(x).
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The initial values Cn(0), then, are precisely the coefficients in the eigenfunction expansion of φ(x),

Cn(0) =
〈φ, φn〉
〈φn, φn〉

=

∫ b
a
φ(x)φn(x)w(x)dx∫ b
a
φ2
n(x)w(x)dx

.

Combining our results, the coefficients Cn(t) are fully given by

Cn(t) = Cn(0) +

∫ t

0

fn(s)eλnsds

Example: To illustrate, consider the simple IBVP (in which one could shift away the steady-state)

ut = α2uxx + sin(3πx),
u(0, t) = 0,
u(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = sin(πx), 0 ≤ x ≤ 1.

The BVP eigenfunctions are φn(x) = sin(nπx) for n > 0, and in the present notation, λn = (nπα)2.

Hence f(x, t) = sin(3πx) simply has fn(t) = δn,3 and φ(x) = sin(πx) gives Cn(0) = δn,1, so that

Cn(t) = Cn(0) +

∫ t

0

fn(s)eλnsds = δn,1 + δn,3

∫ t

0

eλnsds = δn,1 + δn,3
eλnt − 1

λn
.

Namely, we have Cn(t) = 0 for all n except

C1(t) = 1, C3(t) =
eλ3t − 1

λ3

,

and hence our solution u(x, t) is

u(x, t) = φ1(x)e−λ1t +
eλ3t − 1

λ3

φ3(x)e−λ3t

= φ1(x)e−λ1t +
1

λ3

φ3(x)(1− e−λ3t)

u(x, t) = e−(πα)2t sin(πx) +
1

(3πα)2

[
1− e−(3πα)2t

]
sin(3πx)

Some snapshots of this evolution with 3πα = 1 are shown below. See also Desmos.

u(x, 0)

x

u
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To more completely illustrate, let us work a more involved example.

Example: Beginning at t = 0, dye is injected at x = L/2 (cm) at a rate of r g
s

for 1 s into a very
thin (impermeable) tube of initially pure water that flows to the right at rate v cm

s
. Filters at x = 0

and x = L remove all dye from the water at these positions. What is the linear concentration ρ(x, t)
( g

cm
) of the dye?

Recalling Day 3 and denoting by D the diffusion coefficient ( cm2

s
), the appropriate IBVP is

ρt = Dρxx − vρx + rH(1− t)δ(x− L/2),
ρ(0, t) = 0,
ρ(L, t) = 0, 0 ≤ t <∞,
ρ(x, 0) = 0, 0 ≤ x ≤ L,

(30)

where H(t) is the Heaviside step function and δ(x) is the Dirac delta “function”.

We find separable homogeneous solutions. Plugging ρ(x, t) = X(x)T (t) into the sourceless PDE:

T ′(t)X(x) = ρt = Dρxx − vρx = (DX ′′(x)− vX ′(x))T (t),

so that
T ′(t)

T (t)
=
DX ′′(x)− vX ′(x)

X(x)
= −λ,

so T ′ = −λT and X satisfies the BVP

DX ′′ − vX ′ + λX = 0, X(0) = X(L) = 0.

Multiplying by e−vx/D, we see this is a SL BVP with p(x) = Dw(x) = De−vx/D:

(De−vx/DX ′)′ + λe−vx/DX = 0, X(0) = X(L) = 0.

Defining µ :=
√

λ
D
− ( v

2D
)2, it is a straightforward ODE exercise to see that solutions are

X(x) = Bevx/(2D) sin(µx)

for µ such that sin(µL) = 0, i.e. µn = nπ
L

. That is, our eigenvalues are

λn =

(
µ2
n +

( v

2D

)2
)
D =

D

L2
(nπ)2 +

v2

4D
=
D

L2

(
(nπ)2 +

(
Lv

2D

)2
)

with eigenfunctions

φn(x) = evx/(2D) sin
(nπx
L

)
.

Returning to the full problem (30), we presume a solution of the form

ρ(x, t) =
∑
n

Cn(t)φn(x)e−λnt.
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Our IC is trivial, but we must expand the source f(x, t) = rH(1− t)δ(x− L/2)

f(x, t) =
∑
n

fn(t)φn(x) = evx/(2D)
∑
n

fn(t) sin
(nπx
L

)
⇐⇒ f(x, t)e−vx/(2D) =

∑
n

fn(t) sin
(nπx
L

)
.

Either observing this is the Fourier sine series of f(x, t)e−vx/(2D) (on ≤ x ≤ L) or using the weighted
inner product 〈·, ·〉, we see

fn(t) =
2

L

∫ L

0

f(x, t)e−vx/(2D) sin
(nπx
L

)
dx

=
2r

L
H(1− t)

∫ L

0

δ(x− L/2)e−vx/(2D) sin
(nπx
L

)
dx

=
2r

L
e−

vL
4D sin

(nπ
2

)
H(1− t),

and hence the coefficients Cn(t) are

Cn(t) =

∫ t

0

fn(s)eλnsds =
2r

L
e−vL/(4D) sin

(nπ
2

)∫ t

0

H(1− s)eλnsds

=
2r

L
e−

vL
4D sin

(nπ
2

)∫ min(t,1)

0

eλnsds

=
2r

Lλn
sin
(nπ

2

)
e−

vL
4D

(
emin(t,1)λn − 1

)
,

and the solution ρ(x, t) becomes

ρ(x, t) =
2r

L
e
v(2x−L)

4D

∞∑
n=1

sin
(
nπ
2

)
λn

sin
(nπx
L

)
(emin(t,1)λn − 1)e−λnt

=
2r

L
e
Lv
4D

( 2x
L
−1)

∞∑
n=1

sin
(
nπ
2

)
λn

sin
(nπx
L

)
(emin(0,1−t)λn − e−λnt)

While a bit complicated, this can be evaluated however accurately one likes given D,L, v, and r.

Some relevant length scales are L and D
v

; some relevant time scales are 1 s, L
v
, D
v2

, and L2

D
.

To understand this solution, adjust sliders in this Desmos demo (with L = 100). Some observations:

• The rate r only affects the overall amplitude of ρ.

• The dimensionless quantity Lv
D

measures the ability of diffusion to overcome convection and
strongly impacts the convergence rate near x→ L.

• The terms decay only like ∼ 1
λn

for 0 < t ≤ 1, but like ∼ e−λn(t−1)

λn
for t > 1.

• The time scale L2

D
determines how quickly convergence improves for t > 1.
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Day 10: Fourier Transform (Lessons 11-12)

How can we solve IBVP’s on infinite intervals?

We are now equipped, in principle, to solve any 1D heat-type IBVP on a finite interval 0 ≤ x ≤ L.

What if the spatial domain is unbounded, say −∞ < x <∞?

To facilitate this, we conceptually extend the Fourier series (24) of a periodic function f(x),

F (x) =
a0

2
+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
.

It is useful to reformat. Recalling Euler’s identity

eix = cos(x) + i sin(x),

we may rewrite the nth term in the Fourier series

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
=
an
2

[
einπx/L + e−inπx?L

]
+
bn
2i

[
einπx/L − e−inπx/L

]
=
an − ibn

2
einπx/L +

an + ibn
2

e−inπx/L.

Recalling the definitions (23) of an and bn, we see that

an − ibn
2

=
1

2L

∫ L

−L
f(x)

[
cos
(nπx
L

)
− i sin

(nπx
L

)]
dx =

1

2L

∫ L

−L
f(x)e−inπx/Ldx,

an + ibn
2

=
1

2L

∫ L

−L
f(x)

[
cos
(nπx
L

)
+ i sin

(nπx
L

)]
dx =

1

2L

∫ L

−L
f(x)einπx/Ldx.

Denoting the complex numbers

f̂n :=
1√
2L

∫ L

−L
f(x)e−inπx/Ldx, (31)

then, we’ve found

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
=

1√
2L

[
f̂ne

inπx/L + f̂−ne
−inπx/L

]
,

and we may now much more succinctly express the Fourier series (24)

F (x) =
1√
2L

∞∑
n=−∞

f̂ne
inπx/L (32)

F (x) = f(x) says: the information of a periodic function f(x) is equivalent to that of a sequence (f̂n).

40



The magnitudes |f̂n|measure the component of f(x) with frequency nπ
L

: this is the spectrum of f(x).

A periodic function has a discrete spectrum, or only a discrete collection of frequencies {nπ
L
}.

In the limit L→∞, the stepsize π
L

between frequencies approaches 0, suggesting that an arbitrary
function f(x) on R should be comprised of a continuum of frequencies.

Analogously to (31), then: if f(x) is integrable on R, we define the Fourier transform of f(x) as

F [f ](ξ) = F̂ (ξ) :=
1√
2π

∫ ∞
−∞

f(x)e−iξxdx ,

where ξ represents a continuous frequency variable, being the frequency of the oscillatory e−iξx.

For very large L, one might approximate (31) as (denoting ξn = nπ
L

)

f̂n =
1√
2L

∫ L

−L
f(x)e−iξnxdx ≈

√
π

L
F̂ (ξn),

and hence (32) reads (for the usual “nice” f(x))

f(x) = F (x) ≈
√
π√

2L

∞∑
n=−∞

F̂ (ξn)eiξnx =
1√
2π

∞∑
n=−∞

(
F̂ (ξn)eiξnx

)
· π
L

In this final expression, the function F̂ (ξ)eiξx is evaluated at the points ξ = ξn, spaced π
L

apart.

ξ

π/L

· · · ξ−3 ξ−2 ξ−1 ξ0 ξ1 ξ2 ξ3
· · ·

This is precisely a Riemann sum for the integral of F̂ (ξ)eiξx over ξ ∈ R, suggesting (taking L→∞)

f(x)
?
=

1√
2π

∫ ∞
−∞

F̂ (ξ)eiξxdξ

This reasoning is indeed only a suggestion. However, it can be proven under suitable conditions:

Theorem (Fourier Inversion Theorem): If f(x) is continuous and both f(x) and its transform F̂ (ξ)
are absolutely integrable over R, then

f(x) =
1√
2π

∫ ∞
−∞

F̂ (ξ)eiξxdξ

For this reason the inverse Fourier transform operator F−1 is defined as

F−1[F̂ ](x) :=
1√
2π

∫ ∞
−∞

F̂ (ξ)eiξxdξ
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The FIT, then, simply affirms F−1[F [f ]] = f . The transforms F , F−1 are linear operators.

For future reference, F and F−1 continue to be useful tools in higher dimensional settings.

For integrable functions f(~x), F̂ (~ξ ) on Rn, these operators are defined according to

F [f ](~ξ ) :=
1

(2π)n/2

∫
Rn
f(~x)e−i~x·

~ξdn~x F−1[F̂ ](~x) :=
1

(2π)n/2

∫
Rn
F̂ (~ξ )ei~x·

~ξdn~ξ
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Day 11: Fourier Transforms in IVP’s (Lesson 12)

How can we solve IVP’s on infinite intervals?

We investigate structure and properties of Fourier transforms.

Example: We may readily compute the Fourier transform of f(x) = e−ax
2
:

F̂ (ξ) = F [e−ax
2

](ξ) =
1√
2π

∫ ∞
−∞

e−ax
2−iξxdx =

1√
2π

∫ ∞
−∞

e

[
−a(x+ iξ

2a)
2
− ξ

2

4a

]
dx

=
1√
2π
e−

ξ2

4a

∫ ∞
−∞

e−a(x+ iξ
2a)

2

dx =
1√
2π
e−

ξ2

4a

∫ ∞
−∞

e−az
2

dz =
1√
2a
e−

ξ2

4a ,

where we have changed variables11 to z = x+ iξ
2a

and used the standard result∫ ∞
−∞

e−ax
2

dx =

√
π

a
.

We may verify the FIT’s conclusion for this example:

F−1[F̂ (ξ)] =
1√
2a
F−1[e−

ξ2

4a ]

Invoking the same computation as above with a→ b = 1
4a

(and a complex conjugation) gives

F−1[e−bξ
2

](x) =
1√
2b
e−

x2

4b =
√

2ae−ax
2

,

so that we indeed have
F−1[F̂ ](x) = e−ax

2

= f(x).

x

f(x)

ξ

F̂ (ξ)

How does this help us to solve IBVP’s specified on −∞ < x <∞?

This is provided by how the Fourier transform interacts with derivatives:

Theorem: If f(x) and f ′(x) are absolutely integrable over R and limx→±∞ f(x) = 0, then

F [f ′](ξ) = iξF [f ](ξ).
11There is some complex analysis sleight-of-hand here: the integral with respect to z should technically be over

the complex contour from −∞+ iξ
2a to ∞+ iξ

2a . Take a course in complex analysis to learn why this is the same as
the integral over R (for this integrand!).
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Proof. We simply integrate by parts:

F [f ′](ξ) =
1√
2π

∫ ∞
−∞

f ′(x)e−iξxdx =
1√
2π

(f(x)e−iξx)

∣∣∣∣∞
−∞

+
iξ√
2π

∫ ∞
−∞

f(x)e−iξxdx = iξF [f ](ξ)

Under appropriate hypotheses, this may be iterated to obtain

F [f ′′](ξ) = iξF [f ′](ξ) = −ξ2F [f ](ξ).

That is, F turns differential operations in x into algebraic operations in ξ (the frequency domain).

Given a PDE for u(x, t) on −∞ < x <∞, we apply F (at each t) to obtain a problem in û(ξ, t),

û(ξ, t) = F [u] =
1√
2π

∫ ∞
−∞

u(x, t)e−iξxdx

We have the following12 mappings under this application:

F
u 7−−→ û

ux 7−−→ iξû

uxx 7−−→ −ξ2û

ut 7−−→ ût

To illustrate, consider the IVP13

ut = uxx, u(x, 0) = φ(x) for x ∈ R

Applying F to both the PDE and the IC yields

ût = −ξ2û, û(ξ, 0) = Φ̂(ξ) for ξ ∈ R

Crucially: for each fixed ξ, the PDE has become an ODE in t that can be easily solved,

û(ξ, t) = û(ξ, 0)e−ξ
2t = Φ̂(ξ)e−ξ

2t

We may now recover u(x, t) by applying F−1,

u(x, t) = F−1[û] =
1√
2π

∫ ∞
−∞

Φ̂(ξ)e−ξ
2teiξxdξ (33)

This may or may not be analytically evaluable, but it can always be approximated numerically.

12There is once again a mathematician’s subtlety in exchanging the derivative and integral when claiming ut 7→ ût.
13Strictly speaking, it is typically still necessary to specify a “boundary condition at ∞” to uniquely characterize

solutions. For problems we will consider, requiring u→ 0 as |~x| → ∞ is sufficient and will be implicitly assumed.
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Example: An important case is φ(x) = δ(x− x0), a concentrated bump of heat at x0. Then

Φ̂(ξ) =
1√
2π

∫ ∞
−∞

δ(x− x0)e−iξxdx =
e−iξx0√

2π

=⇒ u(x, t) =
1

2π

∫ ∞
−∞

e−ξ
2teiξ(x−x0)dξ =

1√
2π
F−1

[
e−tξ

2
]

(x− x0) =
1

2
√
πt
e−

(x−x0)
2

4t

G(x, x0, t) := 1
2
√
πt
e−

(x−x0)
2

4t is called the system’s Green’s function, impulse response function, or

fundamental solution. The evolution of G(x, x0, t) with t is shown below; see also Desmos.

x0

x

G(x, x0, t)

This exemplifies the procedure by which transform methods proceed, shown schematically below.

Spatial domain (~x) Frequency domain (~ξ )

(~x, t) PDE, e.g.
ut = uxx

u(x, 0) = φ(x)

t ODE, e.g.
ût = −ξ2û

û(ξ, 0) = Φ̂(ξ)

û(ξ, t)u(x, t)

F

ODE
solution

F−1

PDE
solution
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In transform problems, one commonly obtains û as a product of known transforms. Indeed, above

û(ξ, t) = Φ̂(ξ)e−ξ
2t =

1√
2t
F [φ] · F

[
e−

x2

4t

]
(34)

Unfortunately, it is distinctly not the case that F−1 [F [f ] · F [g]] = fg. This presents a question:

F−1 [F [f ] · F [g]] = ?

This is answered by introducing the convolution operation between two functions f(x), g(x) on R.
The convolution f ∗ g of f, g is simply a new function given by

(f ∗ g)(x) :=
1√
2π

∫ ∞
−∞

f(x− y)g(y)dy.

Example: The convolution of f(x) = x and g(x) = e−x
2

is

(f ∗ g)(x) =
1√
2π

∫ ∞
−∞

(x− y)e−y
2

dy =
x√
2π

∫ ∞
−∞

e−y
2

dy =
x√
2

One can check that this operation is commutative and associative, and it distributes across addition:

f ∗ g = g ∗ f
(f ∗ g) ∗ h = f ∗ (g ∗ h)

f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

The following is among the most significant properties of convolution.

Theorem (Convolution Theorem): if f and g are absolutely integrable, then

F [f ∗ g] = F [f ] · F [g] = F̂ (ξ)Ĝ(ξ).

Proof.

F [f ∗ g](ξ) =
1√
2π

∫ ∞
−∞

(f ∗ g)(x)e−iξxdx =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

f(x− y)g(y)dy

]
e−iξxdx

=
1

2π

∫ ∞
−∞

[∫ ∞
−∞

e−iξxf(x− y)dx

]
g(y)dy

=
1

2π

∫ ∞
−∞

[∫ ∞
−∞

e−iξ(z+y)f(z)dz

]
g(y)dy

=

[
1√
2π

∫ ∞
−∞

e−iξzf(z)dz

]
·
[

1√
2π

∫ ∞
−∞

e−iξyg(y)dy

]
= F̂ (ξ) · Ĝ(ξ)

Convolution is precisely the spatial operation arising from multiplication in the frequency domain.

Hence, we have found

F−1 [F [f ] · F [g]] = f ∗ g
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Day 12: Fourier Transforms in IVP’s Cont’d (Lessons 12, 14 (kind of))

How are general solutions related to the fundamental solution G(x, x0, t)?

Returning to the IVP
ut = uxx, u(x, 0) = φ(x),

recall that we found in (34) that the solution in the frequency domain û(ξ, t) is

û(ξ, t) =
1√
2t
F [φ] · F

[
e−

x2

4t

]
The Convolution Theorem now tells us that the solution is

u(x, t) = F−1[û] =
1√
2t
F−1

[
F [φ] · F

[
e−

x2

4t

]]
=

1√
2t

(φ ∗ e−
x2

4t )

=
1

2
√
πt

∫ ∞
−∞

φ(y)e−
(x−y)2

4t dy

Being non-oscillatory, this integral often has (much) better convergence properties than that in (33).

An illuminating observation: this may be written in terms of the Green’s function G(x, y, t) as

u(x, t) =

∫ ∞
−∞

φ(y)G(x, y, t)dy

This is just superposition: considering φ(x) to be the combination of the infinitum of impulses
φ(y)δ(x− y) at each y, the full response is the sum of the responses to these impulses.

Example: The solution to the IVP

ut = uxx, u(x, 0) = H(x+ 1)−H(x− 1) =

{
1 −1 < x < 1

0 |x| > 1

is simply14

u(x, t) =
1

2
√
πt

∫ 1

−1

e−
(y−x)2

4t dy =
1√
π

∫ (1−x)/2
√
t

(−1−x)/2
√
t

e−z
2

dz

=
1

2

[
erf

(
1− x
2
√
t

)
+ erf

(
1 + x

2
√
t

)]
Snapshots of this evolution are shown below. See also Desmos.

14Recall the error function erf(x) :=
2√
π

∫ x

0

e−s
2

ds.
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x

u

Transform methods readily accommodate inhomogeneous problems. Consider the IVP

ut = uxx + f(x, t), u(x, 0) = φ(x) for x ∈ R.

Applying F to both the PDE and the IC yields

ût = −ξ2û+ F̂ (ξ, t), û(ξ, 0) = Φ̂(ξ) for ξ ∈ R

As usual, we obtain an ODE in t (at each fixed ξ) that can be straightforwardly solved,

û(ξ, t) = e−ξ
2t

[
Φ̂(ξ) +

∫ t

0

F̂ (ξ, s)eξ
2sds

]
,

and one may recover u(x, t) via the inverse transform F−1. Again leveraging convolution,

u(x, t) =

∫ ∞
−∞

φ(y)G(x, y, t)dy +

∫ t

0

[∫ ∞
−∞

f(y, s)G(x, y, t− s)dy
]
ds (35)

The first integral is the familiar homogeneous solution for the IC. The remainder,

v(x, t) :=

∫ t

0

[∫ ∞
−∞

f(y, s)G(x, y, t− s)dy
]
ds,

apparently solves
vt = vxx + f(x, t), v(x, 0) = 0 for x ∈ R.

Interestingly, for each s ∈ [0, t], the quantity in brackets is the solution (evaluated at t− s) to

wt = wxx, w(x, 0) = f(x, s) for x ∈ R.

That is, the contribution v(x, t) of the inhomogeneous term f(x, t) to u(x, t) is the accumulation of
the homogeneous responses w(x, t− s) to the IC’s f(x, s). This is Duhamel’s principle.

We revisit the final problem of Day 9, now in an infinite medium. We first exclude convection:

Example: Between t = 0 and t = 1, dye is injected at a constant rate r at x = 0 into a very long,
thin tube of initially pure water. What is the concentration ρ(x, t) of the dye?
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The appropriate IVP is

ρt = Dρxx + rH(1− t)δ(x), ρ(x, 0) = 0 for x ∈ R.

Applying (35) with φ(x) = 0, f(x, t) = rH(1− t)δ(x):

ρ(x, t) =

∫ t

0

[∫ ∞
−∞

f(y, s)G(x, y, t− s)dy
]
ds = r

∫ t

0

H(1− s)
[∫ ∞
−∞

δ(y)G(x, y, t− s)dy
]
ds

= r

∫ t

0

H(1− s)G(x, 0, t− s)ds =

∫ min(1,t)

0

G(x, 0, t− s)(rds)

Explicitly, Duhamel’s principle says: the dye at (x, t) is found by taking, for each time s < t, the
small amount of newly injected dye r · ds (if s < 1), computing how much diffuses to x from the
injection point 0 by time t (so, over the time interval t− s), and “summing” over s. Plugging in G,

ρ(x, t) =
r√
4π

∫ min(1,t)

0

e−
x2

4D(t−s)√
D(t− s)

ds =
r√
4π

∫ t

max(t−1,0)

e−
x2

4Du

√
Du

du

=
r

D
√

4π

[
2
√
Due−

x2

4Du + x
√
π erf

(
x

2
√
Du

)] ∣∣∣∣t
max(t−1,0)

One can visualize this result in this Desmos demo.

Now let us consider the same problem with convection.

Example: Between t = 0 and t = 1, dye is injected at a constant rate r at x = 0 into a very long,
thin tube of initially pure water flowing with velocity v. What is the concentration ρ(x, t) of the dye?

The appropriate IVP is now

ρt = Dρxx − vρx + rH(1− t)δ(x), ρ(x, 0) = 0 for x ∈ R.

One could proceed in multiple ways. To take the transform approach from scratch, apply F :

ρ̂t = −(Dξ2 + iξv)ρ̂+ F̂ (ξ, t), ρ̂(ξ, 0) = 0,

where
F̂ (ξ, t) = F [rH(1− t)δ(x)] = rH(1− t)F [δ(x)] =

r√
2π
H(1− t).

Solving the ODE in t, one has

ρ̂(ξ, t) = e−(Dξ2+iξv)t · r√
2π

∫ t

0

H(1− s)e(Dξ2+iξv)sds =
r√
2π

∫ min(1,t)

0

e−(Dξ2+iξv)(t−s)ds.
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Applying F−1, we find

ρ(x, t) =
r√
2π

∫ min(1,t)

0

F−1
[
e−D(t−s)ξ2 · e−iξv(t−s))

]
ds

=
r√
2π

∫ min(1,t)

0

F−1
[
e−D(t−s)ξ2

] ∣∣∣
x−v(t−s)

ds

=
r√
4π

∫ min(1,t)

0

e−
(x−v(t−s))2

4D(t−s)√
D(t− s)

ds =
r√
4π

∫ t

max(t−1,0)

e−
(x−vu)2

4Du

√
Du

du

=
r

2v

[
erf

(
vu− x
2
√
Du

)
+ e

vx
D erf

(
vu+ x

2
√
Du

)] ∣∣∣∣t
max(t−1,0)

Alternatively: one could first solve the homogeneous problem with an impulse IC,

ut = Duxx − vux, u(x, 0) = δ(x− x0) for x ∈ R,

to find the Green’s function G(x, x0, t). Applying F ,

ût = −(Dξ2 + iξv)û, û(ξ, 0) =
e−iξx0√

2π
,

so that

û(ξ, t) =
1√
2π
e−(Dξ2+iξv)t−iξx0 =

1√
2π
e−Dtξ

2 · e−iξ(x0+vt)

=⇒ G(x, x0, t) = u(x, t) =
1√
2π
F−1

[
e−Dtξ

2 · e−iξ(x0+vt)
]

=
1√
2π
F−1

[
e−Dtξ

2
] ∣∣∣

x−x0−vt

=
1√

4πDt
e−

(x−x0−vt)
2

4Dt

With G, we can simply apply the general result (35) to find ρ, precisely as in the previous example:

ρ(x, t) = r

∫ t

0

H(1− s)
[∫ ∞
−∞

δ(y)G(x, y, t− s)dy
]
ds = r

∫ min(1,t)

0

G(x, 0, t− s)ds

=
r√
4π

∫ min(1,t)

0

e−
(x−v(t−s))2

4D(t−s)√
D(t− s)

ds,

giving the same integral as found above. One can visualize this result in this Desmos demo.

You will explore yet another approach in HW5.
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Day 13: Wave Equation Intro (Lessons 16,19)

How can we model the dynamics of waves?

We now leave behind the heat equation to treat another broad class of physical phenomena: waves.

Waves are essentially characterized by a quantity u(~x, t) fluctuating about a reference state, e.g.

• Taut string or membrane waves: vertical position fluctuates about an average.

• Sound waves: air pressure fluctuates about atmospheric pressure.

• Waves through solids: lattice particle positions fluctuate about an equilibrium distribution.

• Gravitational waves: the notion of distance between spacetime points fluctuates about a trivial
background geometry.

Derivation details vary between applications. General idea: the restoring force is proportional to
the difference between u at (~x, t) and nearby points15. As this difference is quantified by ∆u,

utt = c2∆u (36)

This is the wave equation with speed c, the prototypical hyperbolic PDE.

Optional: Rough derivation for pressure (sound) waves in air. Consider the total mass M(t) of air
in a 3D region U . If air flows with velocity vector field ~v(~x, t) and has density ρ(~x, t), then16

M ′(t) = −
∫
∂U

(ρ~v) · ~dA =⇒ M ′′(t) ≈ −
∫
∂U

(ρ~a) · ~dA

If the only force driving air flow is its pressure gradient, then17 ρ~a ≈ −~∇P , so

M ′′(t) ≈
∫
∂U

(~∇P ) · ~dA =

∫
U

(∆P )dV.

Dividing by the volume V of U and taking the limit V → 0 gives ρtt ≈ ∆P .

Meanwhile, the ideal gas law says P = RT
Mm

ρ (Mm is air’s molar mass). If T is constant18, then

Ptt =
RT

Mm

ρtt =
RT

Mm

∆P,

so small pressure fluctuations satisfy the wave equation with speed c =
√

RT
Mm

.

Now let u(x, t) be the vertical displacement at x of a taut string with linear density ρ(x) and tension
T (x, t). Define θ(x, t) as the angle made by the string with the horizontal at position x. Notably,

tan(θ(x, t)) = ux(x, t).
15For small deviations. Most (not all) wave equation derivations invoke some smallness assumption, e.g. to throw

away higher order terms in a Taylor expansion.
16We neglect a ρt~v term in M ′′: it is second order in deviations from an equilibrium with ~v0 = ~0 and ρ0 constant.
17Another second-order term, ρ(~v · ~∇)~v, is dropped here.
18T actually does typically vary, minorly adjusting c, but that’s an issue for a thermodynamics class.
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x

u(x, t)

T (x, t)

x+ ∆x

u(x+ ∆x, t)

T (x+ ∆x, t)

∆x

∆u

θ(x, t)

θ(x+ ∆x, t)

x

u

We apply Newton’s second law to a segment of width ∆x. The horizontal component reads

T (x+ ∆x, t) cos(θ(x+ ∆x, t))− T (x, t) cos(θ(x, t)) = 0 =⇒ (T cos(θ))x = 0

Hence, the horizontal tension component Th(t) := T cos(θ) is constant in x.

For the vertical component, note that the segment mass is approximately ρ(x)
√

(∆x)2 + (∆u)2, so

ρ(x)
√

(∆x)2 + (∆u)2utt ≈ T (x+ ∆x, t) sin(θ(x+ ∆x, t))− T (x, t) sin(θ(x, t)),

and dividing by ∆x and taking the limit ∆x→ 0 gives

ρ
√

1 + (ux)2utt = (T sin(θ))x = (Th tan(θ))x = Th(tan(θ))x.

Leveraging ux = tan(θ), this reads
ρ sec(θ)utt = Thuxx

Now we must invoke small displacements: for |θ| << 1, sec(θ) ≈ 1, so we then have

utt =
Th
ρ
uxx,

and small displacements u(x, t) satisfy the 1D wave equation utt = c2uxx with speed c =
√

Th
ρ

.

This gives rise to a similar picture, emphasizing concavity, to that seen with the 1D heat equation:

u(x, t)

utt(x, t)

x

u
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Now, however, arrows represent acceleration (of the string) rather than velocity (of temperature).

As the LHS is acceleration, additional forces (gravity, friction, etc.) simply add to the RHS, e.g.

utt = c2uxx − βut − γu− g

has a frictional term βut, a restoring force term γu, and a gravitational term g.

It is again natural to pose initial boundary-value problems. Common physical boundary conditions:

• Controlled end points:

u(0, t) = g1(t)

u(L, t) = g2(t)

• Prescribed (vertical) force at ends:

ux(0, t) = g1(t)

ux(L, t) = g2(t)

• Elastic restoring force to a moving equilibrium:

Thux(0, t) = k(u(0, t)− g1(t))

Thux(L, t) = −k(u(L, t)− g2(t))

While interpretations have changed, we saw these with the heat equation. Broadly, linear BC’s,

αu+ β
∂u

∂n
= g,

are of particular interest. For IC’s, we must now specify both u(x, 0) and ut(x, 0).

Given this data, IBVP’s may generally be approached in very much the same way as before.
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Day 14: Wave Equation Structure (Lessons 17,18)

What are the qualitative structures of wave solutions?

Before treating IBVP’s, let’s see how the 1D wave equation yields wave phenomena. Consider

utt = c2uxx ⇐⇒ (∂2
t − c2∂2

x)u = 0 ⇐⇒ (∂t − c∂x)(∂t + c∂x)u = 0,

so u(x, t) will solve the wave equation if either (∂t + c∂x)u = 0 or (∂t − c∂x)u = 0.

These are first-order PDE’s easily solvable via characteristics: general solutions are

(∂t + c∂x)u = 0 ⇐⇒ u(x, t) = F (x− ct)
(∂t − c∂x)u = 0 ⇐⇒ u(x, t) = G(x+ ct)

Moral: there are two families of characteristics for the 1D wave equation, x−ct = C and x+ct = C.

x

t

x− ct = Cx+ ct = C

The 1D wave equation has two families of characteristics along which information propagates.

Linearity ensures that combinations of the above solutions also solve the wave equation,

u(x, t) = F (x− ct) +G(x+ ct)

In fact, all solutions have this form. To see this, consider the change of coordinates

ξ(x, t) := x+ ct, η(x, t) := x− ct.

In the coordinate system (ξ, η), define the quantity v(ξ, η) by

v(ξ(x, t), η(x, t)) = u(x, t). (37)

Taking partial derivatives, one finds

ux = vξξx + vηηx = vξ + vη

ut = vξξt + vηηt = c(vξ − vη)

uxx = (ux)x = (vξ + vη)ξξx + (vξ + vη)ηηx = vξξ + 2vηξ + vηη

utt = (ut)t = c(vξ − vη)ξξt + c(vξ − vη)ηηt = c2(vξξ − 2vηξ + vηη)
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Hence, restating the wave equation for u in terms of v reads

0 = utt − c2uxx = c2 [(vξξ − 2vηξ + vηη)− (vξξ + 2vηξ + vηη)] = −4c2vηξ,

giving simply vηξ = 0. This may be solved immediately by simply integrating:

vη =

∫
vηξdξ =

∫
0dξ = f(η)

=⇒ v =

∫
vηdη =

∫
f(η)dη = F (η) +G(ξ),

where f(η) is arbitrary, F is an antiderivative of f , and G(ξ) is arbitrary. Now (37) reads

u(x, t) = F (η(x, t)) +G(ξ(x, t)) = F (x− ct) +G(x+ ct)

Hence u(x, t) is always comprised of pieces shifting steadily, either to the right or left, at speed c.

We use this decomposition to solve the wave equation IVP on an infinite domain, −∞ < x <∞:

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x), for x ∈ R

We simply impose the IC’s on the general form found above:

φ(x) = u(x, 0) = F (x) +G(x),

ψ(x) = ut(x, 0) = cG′(x)− cF ′(x).

Integrating the latter yields, for some constant C,

G(x)− F (x) =
1

c

∫ x

0

ψ(s)ds+ C

A bit of algebra now yields

F (x) =
1

2
φ(x)− 1

2c

∫ x

0

ψ(s)ds− C

2
,

G(x) =
1

2
φ(x) +

1

2c

∫ x

0

ψ(s)ds+
C

2
,

and plugging into the identity u(x, t) = F (x− ct) +G(x+ ct) gives

u(x, t) =
1

2
[φ(x− ct) + φ(x+ ct)] +

1

2c

∫ x+ct

x−ct
ψ(s)ds (38)

This result is known as the D’Alembert solution. It implies that u(x0, t0) depends only on the initial
data for x0 − ct0 ≤ x ≤ x0 + ct0: the wave equation cannot propagate information faster than c.19

(x0, t0)

x0 − ct0 x0 + ct0
x

t

19This is in stark contrast with the heat equation, under which information propagates infinitely quickly.
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Example: The solution to the IVP

utt = c2uxx, u(x, 0) = e−x
2

, ut(x, 0) = 0, for x ∈ R

is given immediately by (38),

u(x, t) =
1

2

[
e−(x−ct)2 + e−(x+ct)2

]
.

The initial Gaussian profile is comprised of two pulses moving to the left and right: see Desmos.

x

u

Example: The solution to the IVP

utt = c2uxx, u(x, 0) = 0, ut(x, 0) = e−x
2

, for x ∈ R

is also given immediately by (38),

u(x, t) =

√
π

4c
[erf(x+ ct)− erf(x− ct)] .

The Gaussian’s integral is split into two subtracted pieces moving to the left and right: see Desmos.

x

u

Points (x0, t0) where u has leveled off (to
√
π

2c
) have the Gaussian’s bump within (x0 − ct0, x0 + xt0)

Now consider a semi-infinite IBVP, modeling (say) a very long taut string fastened at one end:

utt = c2uxx,
u(0, t) = 0, 0 ≤ t <∞,
u(x, 0) = φ(x),
ut(x, 0) = ψ(x), 0 ≤ x ≤ ∞.
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It’s still true that u(x, t) = F (x− ct) +G(x+ ct), and the IC’s yield the same algebra as before, so

F (x) =
1

2
φ(x)− 1

2c

∫ x

0

ψ(s)ds,

G(x) =
1

2
φ(x) +

1

2c

∫ x

0

ψ(s)ds, (39)

Since φ(x), ψ(x) are only defined on x > 0, however, these are now only meaningful for x > 0.

No issue evaluating G(x+ ct): shifting data to the left is unambiguous.

Evaluating F (x− ct) is problematic (for ct > x): what is shifting right into our domain from x < 0?

Better question: what must be shifting in from x < 0 to maintain the BC u(0, t) = 0?

Answer: precisely the opposite of what is shifting out to x < 0. This is achieved by replacing φ and
ψ in (39) by their odd extensions φo and ψo, defined by

φo(x) :=

{
φ(x) x > 0

−φ(−x) x < 0

(similarly for ψo), to specify F and G everywhere. The semi-infinite IBVP solution is then simply

u(x, t) =
1

2
[φo(x− ct) + φo(x+ ct)] +

1

2c

∫ x+ct

x−ct
ψo(s)ds

Example: According to this formula, the solution to the IBVP

utt = c2uxx,
u(0, t) = 0, 0 ≤ t <∞,
u(x, 0) = e−a(x−2)2 ,
ut(x, 0) = 0, 0 ≤ x ≤ ∞,

is given by splitting the odd extension of the Gaussian into pulses moving left and right: see Desmos.

x

u

On x > 0 (the actual solution), the left-moving pulse “reflects” off of x = 0 with a sign change.
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Day 15: Wave Equation IBVP’s (Lesson 20)

How do we solve finite wave IBVP’s?

Finally, we consider IBVP’s on a finite interval. The prototypical such problem is

utt = c2uxx,
u(0, t) = 0,
u(L, t) = 0, 0 ≤ t <∞,
u(x, 0) = φ(x),
ut(x, 0) = ψ(x), 0 ≤ x ≤ L.

(40)

We may proceed by separation of variables, positing u(x, t) = X(x)T (t), so that the PDE reads

X(x)T ′′(t) = c2X ′′(x)T (t) =⇒ T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ2,

giving T ′′ + c2λ2T = 0 and the familiar spatial BVP

X ′′ + λ2X = 0, X(0) = X(L) = 0,

with solutions Xn(x) = sin
(
nπx
L

)
for λn = nπ

L
. Tn(t) is qualitatively different from before, however:

Tn(t) = an cos

(
nπct

L

)
+ bn sin

(
nπct

L

)
,

giving oscillations in time rather than the exponential decay characteristic of heat problems.

The separable solutions to our wave BVP, then, are

un(x, t) =

(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
sin
(nπx
L

)
.

Such solutions are often called standing waves, and un is sometimes called the nth harmonic.

u1(x, t)

x
0 L

u2(x, t)

x
0 L

u3(x, t)

x
0 L

58



Note that even though standing waves appear stationary, the identities

cos

(
nπct

L

)
sin
(nπx
L

)
=

1

2

[
sin
(nπ
L

(x− ct)
)

+ sin
(nπ
L

(x+ ct)
)]
,

sin

(
nπct

L

)
sin
(nπx
L

)
=

1

2

[
cos
(nπ
L

(x− ct)
)
− cos

(nπ
L

(x+ ct)
)]

indicate that these are still comprised of left- and right-moving components.

One can see standing wave solutions dynamically in this Desmos demo: play the t slider and vary n.

As (40) is homogeneous: superposition! Can combinations of un accommodate any initial data?

u(x, t)
?
=
∞∑
n=1

(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
sin
(nπx
L

)
(41)

This is straightforward to answer:

φ(x) = u(x, 0) =
∞∑
n=1

an sin
(nπx
L

)
ψ(x) = ut(x, 0) =

∞∑
n=1

nπc

L
bn sin

(nπx
L

) ⇐⇒
an =

2

L

∫ L

0

φ(x) sin
(nπx
L

)
dx

bn =
2

nπc

∫ L

0

ψ(x) sin
(nπx
L

)
dx

As Fourier sine series can represent any “nice” function, (41) can indeed solve (40) for “nice” φ, ψ.

Example: Solve the above IBVP (40) with L = 1, φ(x) = x(1− x), ψ(x) = 0.

The solution takes the form (41) with bn = 0 and

an = 2

∫ 1

0

x(1− x) sin(nπx)dx =
4

(nπ)3
[1− (−1)n]

(this was computed on Day 5), so that

u(x, t) =
8

π3

∞∑
n=0

cos((2n+ 1)πct) sin((2n+ 1)πx)

(2n+ 1)3

x

u

1
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One can see this dynamically here. Note the shape distorts over time: this is not a standing wave.

In this way, the analysis of waves on a finite interval is procedurally similar to the analysis of heat.

Can (40) be solved as u(x, t) = F (x− ct) +G(x+ ct)? What are F and G outside of [0, L]?

HW7: resolved by replacing φ and ψ by their periodic odd extensions fo and go on R,

u(x, t) =
1

2
[fo(x− ct) + fo(x+ ct)] +

1

2c

∫ x+ct

x−ct
go(s)ds

Example: See this Desmos demo of the solution to

utt = c2uxx,
u(0, t) = 0,
u(1, t) = 0, 0 ≤ t <∞,
u(x, 0) = e−a(x−1/2)2 ,
ut(x, 0) = 0, 0 ≤ x ≤ 1.

Pulses now effectively reflect off of both boundaries.

Such a succinct description is atypical when one adjusts BC’s and the PDE. Depending on the
problem, one can employ SoV or attempt to construct F and G.
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Day 16: Canonical Forms (Lesson 23)

How comprehensive are our PDE prototypes?

Recall that the most general second-order linear PDE in two variables (x, y) is

Auxx +Buxy + Cuyy︸ ︷︷ ︸
Principal part

+Dux + Euy + Fu = G, (42)

where each of A through G may be functions of (x, y), and these fall into three basic categories20:

(1) Parabolic (B2 − 4AC = 0). Prototype: uxx − ut = 0 (heat equation), with A = 1, E = −1.

(2) Hyperbolic (B2− 4AC > 0). Prototype: uxx− utt = 0 (wave equation)21, with A = 1, C = −1.

(3) Elliptic (B2 − 4AC < 0). Prototype: uxx + uyy = 0 (Laplace’s equation), with A = C = 1.

We will see that for any PDE (42), the principal part may be made to agree with one of the three
prototypes via a coordinate change. When this is achieved, the PDE is said to be in canonical form.

We begin with an arbitrary change of coordinates ξ(x, y), η(x, y). Define the quantity v(ξ, η) by

v(ξ(x, y), η(x, y)) = u(x, y).

We may apply the multivariable chain rule to relate derivatives of u to those of v:

ux = vξξx + vηηx

uy = vξξy + vηηy

uxx = vξξξ
2
x + 2vξηξxηx + vηηη

2
x + vξξxx + vηηxx

uxy = vξξξxξy + vξη(ξxηy + ξyηx) + vηηηxηy + vξξxy + vηηxy

uyy = vξξξ
2
y + 2vξηξyηy + vηηη

2
y + vξξyy + vηηyy

If u satisfies (42), substituting these identities yields a PDE for v(ξ, η) of the form

Avξξ +Bvξη + Cvηη +Dvξ + Evη + Fv = G.

It is a straightforward, if tedious, task to relate the barred quantities A-G to the original A-G:

A = Aξ2
x +Bξxξy + Cξ2

y

B = 2Aξxηx +B(ξxηy + ξyηx) + 2Cξyηy

C = Aη2
x +Bηxηy + Cη2

y

D = Aξxx +Bξxy + Cξyy +Dξx + Eξy (43)

E = Aηxx +Bηxy + Cηyy +Dηx + Eηy

F = F

G = G

20If the coefficients are not constant, this categorization may vary throughout the xy plane.
21or uηξ = 0, with B = 1
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HW7: verify that the PDE’s for u and v have the same type (if ξ(x, y) and η(x, y) are real).

Loosely: we have two coordinates to choose, so we may impose two constraints on the principal part.

Recall: the wave equation can be made to have principal part vξη. In general, this would require

0 = A ⇐⇒ 0 = A

(
ξx
ξy

)2

+B

(
ξx
ξy

)
+ C,

0 = C ⇐⇒ 0 = A

(
ηx
ηy

)2

+B

(
ηx
ηy

)
+ C, (44)

giving two instantiations of the same quadratic equation. Assigning one root to each coordinate,

ξx
ξy

=
−B +

√
B2 − 4AC

2A
,

ηx
ηy

=
−B −

√
B2 − 4AC

2A
(45)

These determine the level sets of ξ(x, y) and η(x, y), curves along which ξ and η are constant.

Indeed, if a curve ~γ(s) := (x(s), y(s)) satisfies that ξ(~γ(s)) is constant, then

0 =
d

ds
[ξ(~γ(s))] = ξx

dx

ds
+ ξy

dy

ds
⇐⇒ dy

dx
= −ξx

ξy

As ξx/ξy is known, this first-order ODE can, in principle, be solved for such curves in the xy plane.

x

y

dy

dx
= −ξx

ξy

dy

dx
= −ηx

ηy

Characteristics of a hyperbolic PDE, generally curved, are level sets of the new coordinates ξ, η.

This description holds so long as the expressions in (45) are real, i.e. if the PDE is hyperbolic. These
curves are then the PDE’s characteristics, and (45) are therefore called the characteristic equations.

Solutions are generally implicit: f(x, y) = C. As ξ is constant along these curves, replacing C → ξ
to obtain ξ(x, y) = f(x, y), and doing similarly for η, yields a choice of ξ, η for which (44) holds.

This choice of ξ, η transforms a hyperbolic PDE into canonical form, having principal part vξη.
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If desired, one could obtain the more familiar principal part wtt − wzz by now taking (see Day 14)

z(ξ, η) =
1

2
(ξ + η), t(ξ, η) =

1

2
(ξ − η).

Example: Convert the hyperbolic PDE

uxx + 5uxy + 4uyy + xux = 0

to canonical form. What are the canonical coordinates ξ(x, y), η(x, y)?

Here A = 1, B = 5, C = 4, so B2 − 4AC = 52 − 4 · 1 · 4 = 9 > 0, so this is indeed hyperbolic.

The characteristic equations read

ξx
ξy

=
−B +

√
B2 − 4AC

2A
= −1,

ηx
ηy

=
−B −

√
B2 − 4AC

2A
= −4,

and hence characteristics are determined by

dy

dx
= −ξx

ξy
= 1 =⇒ y = x+ C1 =⇒ ξ(x, y) = y − x

dy

dx
= −ηx

ηy
= 4 =⇒ y = 4x+ C2 =⇒ η(x, y) = y − 4x

We can now convert from scratch or plug into (43). Of course, A = C = 0 by construction, and

B = 2Aξxηx +B(ξxηy + ξyηx) + 2Cξyηy = 2(−1)(−4) + 5(−1− 4) + 2 · 4 = −9.

Similarly D = Dξx = −x, E = Dηx = −4x, F = G = 0. Using x = (ξ− η)/3, the canonical form is

vξη +
ξ − η

27
(vξ + 4vη) = 0

We could now set z(ξ, η) = (ξ + η)/2 and t(ξ, η) = (ξ − η)/2 and define w(z, t) by

w(z(ξ, η), t(ξ, η)) = v(ξ, η)

The equivalent PDE for w(z, t) is

wtt − wzz +
4t

27
(3wt − 5wz) = 0

Above, characteristics were straight lines. We now treat a case with curved characteristics.

Example: Convert the PDE22

uxx − xuyy = 0

22rearranging to uyy = uxx/x, this is the wave equation with a speed which decreases with x.
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to canonical form on the half-plane x > 0.

Here A = 1, B = 0, C = −x, so B2 − 4AC = 4x > 0 for x > 0, so this is indeed hyperbolic.

The characteristic equations read

ξx
ξy

=
−B +

√
B2 − 4AC

2A
=
√
x,

ηx
ηy

=
−B −

√
B2 − 4AC

2A
= −
√
x,

and hence characteristics (graphed below) are determined by

dy

dx
= −ξx

ξy
= −
√
x =⇒ 3y = −2x3/2 + C1 =⇒ ξ(x, y) = 3y + 2x3/2

dy

dx
= −ηx

ηy
=
√
x =⇒ 3y = 2x3/2 + C2 =⇒ η(x, y) = 3y − 2x3/2

Constant ξ

Constant η

x

y

Note: these map onto the region ξ > η. Plugging into (43), we find A = C = F = G = 0 and

B = 2ξxηx − 2xξyηy = −18x− 18x = −36x

D = ξxx = 3
2
√
x

E = ηxx = − 3
2
√
x

Using x3/2 = (ξ − η)/4, the canonical form is then

vξη −
vξ − vη
6(ξ − η)

= 0

In terms of z(ξ, η) = (ξ + η)/2 and t(ξ, η) = (ξ − η)/2, this becomes23 (on t > 0)

wtt − wzz +
wt
3t

= 0

23This is the wave equation with a fixed speed, but with frictional damping that lessens with time.
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What about non-hyperbolic equations? Elliptic case: one can follow the procedure, but ξ(x, y) and
η(x, y) become complex, with ξ∗ = η. Characteristic solutions are no longer curves in the xy plane.

For a real coordinate transformation, instead take

α(x, y) =
1

2
(ξ(x, y) + η(x, y)) = Re(ξ), β(x, y) =

1

2i
(ξ(x, y)− η(x, y)) = Im(ξ).

This yields a PDE with principal part vαα + vββ, as desired.

Example: Convert the PDE
uxx + xuyy = 0

to canonical form on the half-plane x > 0.

Here A = 1, B = 0, C = x, so B2 − 4AC = −4x < 0 for x > 0, so this is elliptic.

The characteristic equations read

ξx
ξy

=
−B +

√
B2 − 4AC

2A
= i
√
x,

ηx
ηy

=
−B −

√
B2 − 4AC

2A
= −i

√
x,

and hence “characteristics” are determined by

dy

dx
= −ξx

ξy
= −i

√
x =⇒ 3y = −2ix3/2 + C1 =⇒ ξ(x, y) = 3y + 2ix3/2

dy

dx
= −ηx

ηy
= i
√
x =⇒ 3y = 2ix3/2 + C2 =⇒ η(x, y) = 3y − 2ix3/2

As these are complex, we instead utilize the real and imaginary parts,

α(x, y) = Re(ξ) = 3y, β(x, y) = Im(ξ) = 2x3/2.

We could plug into (43) (with ξ, η → α, β everywhere). Here, it’s easy to proceed from scratch:

ux = vααx + vββx = 3
√
xvβ

uy = vααy + vββy = 3vα

uxx =
3

2
√
x
vβ + 9xvββ

uyy = 9vαα

Plugging into uxx + xuyy = 0 directly yields

9x(vαα + vββ) +
3

2
√
x
vβ = 0.

Slightly rearranging and using β = 2x3/2, the canonical form is

vαα + vββ +
vβ
3β

= 0
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Optional: Parabolic case

One now has only one characteristic equation. Defining ξ(x, y) as usual and taking η(x, y) to be
anything else24 (e.g. η(x, y) = y), one has A = B = 0, and the v PDE reads

Cvηη +Dvξ + Evη + Fv = G

with C 6= 0. Dividing by C gives

Theorem: Any second-order, 2D, linear, parabolic PDE may be cast in the form

vηη + L1[v] = g(ξ, η),

for some first-order linear differential operator L1.

This is the sense in which an arbitrary parabolic PDE is similar to the heat equation.

24“Else” here means η should be independent of ξ, i.e. the transformation (x, y) 7→ (ξ, η) must be (locally) invertible.
Of course, this is necessary for it to be meaningfully called a “change of coordinates”.
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Day 17: Wave Equation in 2D, 3D (Lesson 24)

How do waves propagate in higher dimensions?

We are well-versed in the solution of hyperbolic and parabolic PDE’s in one spatial dimension.

We now treat a higher dimensional problem. Namely, we consider the full-space 3D wave IVP,

utt = c2∆u = c2(uxx + uyy + uzz), u(~x, 0) = φ(~x), ut(~x, 0) = ψ(~x), for ~x ∈ R3 (46)

This may be approached via the Fourier transform. Recalling from HW5 that F [∆u] = −‖~ξ‖2û,

ûtt = −c2‖~ξ‖2û, û(~ξ, 0) = Φ̂(~ξ ), ût(~ξ, 0) = Ψ̂(~ξ ), for ~ξ ∈ R3.

This ODE IVP in t may be straightforwardly solved, yielding

û(~ξ, t) = Φ̂(~ξ ) cos
(
c‖~ξ‖t

)
+ Ψ̂(~ξ )

sin
(
c‖~ξ‖t

)
c‖~ξ‖

= ∂t

Φ̂(~ξ )
sin
(
c‖~ξ‖t

)
c‖~ξ‖

+ Ψ̂(~ξ )
sin
(
c‖~ξ‖t

)
c‖~ξ‖

To find u(x, t), then, we must evaluate

F−1

F̂ (~ξ )
sin
(
c‖~ξ‖t

)
c‖~ξ‖

 = ? (47)

Toward this end, define the spherical mean of a function f on R3 to be a new function MR[f ] given
at ~x by the mean value of f on the sphere SR(~x) of radius R centered at ~x,

MR[f ](~x) :=
1

4πR2

∫
~y∈SR(~x)

f(~y)dA.

You will show in HW8 that

F [MR[f ]] = F̂ (~ξ )
sin
(
‖~ξ‖R

)
‖~ξ‖R

,

so that the inverse transform (47) is simply tMct[f ]. We may leverage this to evaluate F−1[û],

u(~x, t) = ∂t(tMct[φ]) + tMct[ψ] (48)

This is the solution to (46) and 3D analogue of the D’Alembert solution, known as Kirchoff’s formula25.

Crucially: u at (~x, t) is determined by values of φ and ψ on the sphere centered at ~x with radius ct.

Physically: disturbances travel at exactly c in 3D. In 1D, disturbances travelled no faster than c.

25This name typically refers the slightly more explicit expression u(~x, t) = Mct

[
φ+ ct∂φ∂n + tψ

]
(with ∂

∂n the

derivative normal to the sphere), but we won’t concern ourselves with going this far.
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x0 x∗

t1 x0 − ct1 x0 + ct1

t2 x0 − ct2 x0 + ct2

t3 x0 − ct3 x0 + ct3

x

t

~x0

r = ct1

r = ct2

~x∗

r = ct3

A point-like wave disturbance at t = 0 propagates in 1D from x0 (left) and in 3D26 from ~x0 (right).
On the left, an observer at x∗ which first sees the wave at t2 continues to see it indefinitely.

On the right, the observer at ~x∗ only sees the wave signal instantaneously at t2.

Waves emanating from a point are shown above. The 3D disturbance is thickened below.

In any dimension, waves have sharp leading edges: it is felt suddenly upon reaching the observer.

In 3D (but not 1D), waves also have sharp trailing edges: it is suddenly not felt upon passing by.
This feature of 3D waves is known as Huygen’s principle.

~x0

r0

2r0

r = ct1

2r0

r = ct2

~x∗

2r0

r = ct3

A spherically-concentrated disturbance with radius r0 propagates from ~x0 in 3D. At each t, the region in space
feeling the disturbance is a spherical shell with central radius ct and thickness ∆r = 2r0.

The observer at ~x∗ sees the wave for a short duration as it passes by.

We’ve solved the full-space wave IVP in 1D and 3D. Now consider the 2D problem,

utt = c2∆u = c2(uxx + uyy), u(~x, 0) = φ(~x), ut(~x, 0) = ψ(~x), for ~x ∈ R2 (49)

Approach via method of descent: a solution to (46) with φ, ψ independent of z will also solve (49).

Indeed: 1D, 2D, and 3D waves can all propagate in 3D space. In this context, 1D waves are called
plane waves; 2D waves are called cylindrical waves; and 3D waves are called spherical waves.

To solve (49), we simply replace, φ, ψ(x, y, z)→ φ, ψ(x, y) in the solution (48),

u(~x, t) = ∂t

(
1

4πc2t

∫
~y∈Sct(~x)

φ(~y)dA

)
+

1

4πc2t

∫
~y∈Sct(~x)

ψ(~y)dA

26Take note that the circles here represent spheres in 3D space.
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Writing ~y = ~x + (x̃, ỹ, z̃) and using z̃ =
√

(ct)2 − x̃2 − ỹ2 on the sphere of interest, we have

dA =
√

1 + z̃2
x̃ + z̃2

ỹ dx̃dỹ =
ct√

(ct)2 − x̃2 − ỹ2
dx̃dỹ,

with (x̃, ỹ) varying over a 2D disc Dct of radius ct (centered at x̃ = ỹ = 0). Writing ~x = (x, y, z),

1

4πc2t

∫
~y∈Sct(~x)

ψ(~y)dA =
1

2πc

∫
Dct

ψ(x+ x̃, y + ỹ)√
(ct)2 − x̃2 − ỹ2

dx̃dỹ =
1

2πc

∫ 2π

0

∫ ct

0

ψ(x′, y′)√
(ct)2 − r̃2

r̃dr̃dθ,

and similarly for φ. Here, we’ve abbreviated x′ := x+ r̃ cos(θ), y′ := y + r̃ sin(θ).

Hence, the solution to (49) may be written (this is Poisson’s formula27)

u(x, y, t) =
1

2πc

[∫ 2π

0

∫ ct

0

ψ(x′, y′)√
(ct)2 − r̃2

r̃dr̃dθ + ∂t

( ∫ 2π

0

∫ ct

0

φ(x′, y′)√
(ct)2 − r̃2

r̃dr̃dθ

)]
(50)

As an integral over Dct (not its boundary), this 2D solution does not respect Huygen’s principle.

2D waves decay over time as they pass an observer, but they do not have a sharp trailing edge.

~x0

r =
ct1

r = ct2

~x∗

r = ct2

A point-like wave disturbance propagates in 2D from ~x0.
At each t, the region in space feeling the disturbance is a disc with radius ct centered on ~x0.

While it does decay over time, in principle the observer at ~x∗ sees the wave indefinitely after t2.

This 2D picture generally applies in even dimensions, while the 3D picture applies in odd dimen-
sions (outside of the special case of 1D).

One could further descend to 1D, replacing φ, ψ(x, y)→ φ, ψ(x) to recover the D’Alembert solution.

27Again, this typically refers to a slightly more explicit expression (with numerator evaluated at (x′, y′)),

u(x, y, t) =
1

2πc

∫ 2π

0

∫ ct

0

φ+ r ∂φ∂r + tψ√
(ct)2 − r̃2

r̃dr̃dθ
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Day 18: Higher dimensional IBVP’s (None)

How can we solve IBVP’s in higher dimensions?

Consider the prototypical 2D wave IBVP,

utt = c2∆u,
u(0, y, t) = 0, u(x, 0, t) = 0,
u(1, y, t) = 0, u(x, 1, t) = 0, 0 ≤ t <∞,
u(x, y, 0) = φ(x, y),
ut(x, y, 0) = ψ(x, y), 0 ≤ x, y ≤ 1.

(51)

This 2D wave IBVP on a square may model waves on a thin, taut membrane, e.g. a square drumhead.

We may proceed via separation of variables: seek separable solutions u(x, y, t) = X(x)Y (y)T (t),

X(x)Y (y)T ′′(t) = c2X ′′(x)Y (y)T (t) + c2X(x)Y ′′(y)T (t) ⇐⇒ T ′′

c2T
=
X ′′

X
+
Y ′′

Y

The LHS is independent of x, y and the RHS is independent of t, so we must have

T ′′

c2T
= k,

X ′′

X
+
Y ′′

Y
= k ⇐⇒ Y ′′

Y
= k − X ′′

X
.

This last equation has a LHS independent of x and RHS independent of y, so we must further have

X ′′

X
= l,

Y ′′

Y
= k − l.

We encounter familiar BVP’s for X(x) and Y (y), with no nontrivial solutions if l > 0 or k − l > 0.

Hence, let us set l = −µ2, k − l = −ν2, and k = −λ2 := −µ2 − ν2. Collecting, we’ve found

X ′′ + µ2X = 0, X(0) = X(1) = 0,

Y ′′ + ν2Y = 0, Y (0) = Y (1) = 0,

T ′′ + c2λ2T = 0, λ2 := µ2 + ν2.

The BVP’s for X and Y are simply two copies of the same problem we’ve seen repeatedly, yielding

Xn(x) = sin(nπx), Ym(x) = sin(mπx),

for µn = nπ and νm = mπ. Each combination of these yields a λ value, λ2
nm = π2(n2 +m2), with

Tnm(t) = anm cos(cλnmt) + bnm sin(cλnmt).

We have therefore found that there is a two-parameter family of spatially distinct separable solutions,

unm(x, y, t) = [anm cos(λnmct) + bnm sin(λnmct)] sin(nπx) sin(mπy).

These are 2D standing waves: see Desmos. As usual, we ask if we can build u via superposition,
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u(x, y, t)
?
=

∞∑
n,m=1

[anm cos(λnmct) + bnm sin(λnmct)] sin(nπx) sin(mπy) (52)

This reduces to the questions

φ(x, y) = u(x, y, 0)
?
=

∞∑
n,m=1

anm sin(nπx) sin(mπy),

ψ(x, y) = ut(x, y, 0)
?
=

∞∑
n,m=1

cλnmbnm sin(nπx) sin(mπy).

This can indeed be achieved for “nice” φ, ψ: it is simply a Fourier sine series in each direction.

Namely: as a function of x, we may expand φ(x, y) in a sine series in x with y-dependent coefficients,

φ(x, y) =
∞∑
n=1

an(y) sin(nπx), an(y) = 2

∫ 1

0

φ(x, y) sin(nπx)dx.

As functions of y, each an(y) may be expanded in a sine series in y,

φ(x, y) =
∞∑
n=1

[
∞∑
m=1

anm sin(mπy)

]
sin(nπx) =

∞∑
n,m=1

anm sin(nπx) sin(mπy),

anm = 2

∫ 1

0

an(y) sin(mπy)dy = 4

∫ 1

0

∫ 1

0

φ(x, y) sin(nπx) sin(mπy)dxdy.

Applying the same to ψ(x, y), we’ve found that (52) will indeed solve (51) if one takes

anm = 4

∫ 1

0

∫ 1

0

φ(x, y) sin(nπx) sin(mπy)dxdy, bnm =
4

cλnm

∫ 1

0

∫ 1

0

ψ(x, y) sin(nπx) sin(mπy)dxdy

Example: Solve the IBVP (51) with φ(x, y) = xy(1−x)(1−y) and ψ(x, y) = 0.1 sin(2πx) sin(3πy).

Clearly, bnm = δn,2δm,3
10cλ2,3

. For anm, we simply apply the formula to compute

anm = 4

∫ 1

0

∫ 1

0

φ(x, y) sin(nπx) sin(mπy)dxdy

=

[
2

∫ 1

0

x(1− x) sin(nπx)dx

]
·
[
2

∫ 1

0

y(1− y) sin(mπy)dy

]
=

4

(nπ)3
[1− (−1)n] · 4

(mπ)3
[1− (−1)m]

=
16

(nm)3π6
[1− (−1)n] [1− (−1)m] .

Putting these together in (52), we have (watch this evolve in this Desmos demo)
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u(x, y, t) =
64

π6

∞∑
n,m=0

sin((2n+ 1)πx) sin((2m+ 1)πy)

(2n+ 1)3(2m+ 1)3
cos(λ2n+1,2m+1ct) +

sin(λ2,3ct)

10cλ2,3

sin(2πx) sin(3πy)

In this way, IBVP’s on a rectangular domain often reduce to familiar problems, except that there
is one spatial BVP in each coordinate direction.
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Day 19: Circular Drumhead Problem; Bessel Functions (Lessons 30,31)

How do we solve IBVP’s on more general domains?

A realistic drumhead might be modeled on a circular domain rather than rectangular, i.e. by

utt = c2∆u,
u(x, y, t) = 0 for x2 + y2 = 1,
u(x, y, 0) = φ(x, y),
ut(x, y, 0) = ψ(x, y), 0 ≤ x2 + y2 ≤ 1.

(53)

The separation ansatz u(x, y, t) = X(x)Y (y)T (t) is no longer appropriate, as the BC does not
descend to X or Y individually. We can at least separate u(x, y, t) = U(x, y)T (t), which yields

T ′′

c2T
=

∆U

U
= −λ2

(HW8: the separation constant here cannot be positive) and leads to

∆U + λ2U = 0,

T ′′ + c2λ2T = 0.

The T equation is familiar and straightforward, giving the usual temporal oscillations

T (t) = A cos(λct) +B sin(λct).

The spatial equation is known as the Helmholtz equation, arising in a variety of settings.

The Helmholtz equation on a domain in Rn paired with a BC forms an elliptic eigenvalue problem.
The breadth of such problems is much richer beyond 1D.

To proceed via our typical methods, we generally must first adapt our coordinate system to the BC.

The IBVP (53) is simplest in polar coordinates (r, θ) on 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, defined by

x = r cos(θ), y = r sin(θ).

Recall from HW7: in polar coordinates, the 2D Laplacian ∆u = uxx + uyy becomes

∆u = urr +
1

r
ur +

1

r2
uθθ,

so the Helmholtz equation and its BC in polar coordinates comprise the BVP

Urr +
1

r
Ur +

1

r2
Uθθ + λ2U = 0, U(1, θ) = 0

This is now amenable to further separation via the ansatz U(r, θ) = R(r)Θ(θ), giving

0 = R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) + λ2R(r)Θ(θ)

⇐⇒ −Θ′′

Θ
= r2R

′′

R
+ r

R′

R
+ λ2r2 = k.
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These must be constant (denoted k) in the usual way. We obtain a periodic SL BVP in Θ,

Θ′′ + kΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

These BC’s, necessary for U to make sense, require k = n2 (n ≥ 0 an integer). Solutions are then

Θn(θ) = A cos(nθ) +B sin(nθ)

Turning to the BVP in R on 0 ≤ r ≤ 1, it now reads

r2R′′ + rR′ + (λ2r2 − n2)R = 0, R(1) = 0. (54)

This irregular SL BVP requires an additional BC at r = 0: |R(0)| <∞28 is sufficient.

This ODE, while famous, is likely unfamiliar. It is a slight variation (if λ 6= 0) of Bessel’s equation,

x2y′′ + xy′ + (x2 − α2)y = 0,

with α ∈ R a parameter29. Solutions generally cannot be expressed in elementary functions.

As the ODE is common, however, a set of linearly independent solutions are named,

Jα(x) order α Bessel function of the first kind,

Yα(x) order α Bessel function of the second kind.

One may define Jα(x) via the power series resulting from the method of Frobenius,

Jα(x) :=
∞∑
m=0

(−1)m

m! · Γ(m+ α + 1)

(x
2

)2m+α

,

while Yα(x) may be defined30 as

Yα(x) :=
Jα(x) cos(απ)− J−α(x)

sin(απ)
.

See Desmos for plots. Note that, Jα(x) ∼ xα near x→ 0, meaning Yα(x) diverges at x→ 0.

Returning to our BVP (54), solutions to the ODE for R(r) are, for each n ≥ 0,

Rn(r) = CnJn(λr) +DnYn(λr).

The BC |R(0)| <∞ now forces Dn = 0, so that our radial solutions are simply Jn(λr).

The BC R(1) = 0 stipulates Jn(λ) = 0. Being oscillatory, Jn has infinitely many roots λnm.

That is: solutions to the BVP (54) are Rnm(r) = Jn(λnmr), with λnm the mth positive root of Jn.

See Desmos for plots. The λnm have no formula, but are well-tabulated and readily computable.

28A distinctly reasonable assumption for our drumhead.
29General theory of Bessel functions allows α ∈ C and complex arguments, but we have no need for this generality.
30This appears singular for integer orders α = n, but one may simply define Yn(x) := lim

α→n
Yα(x).
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n

m

λnm 0 1 2 3 4
1 2.40 3.83 5.13 6.38 7.59
2 5.52 7.02 8.42 9.76 11.06
3 8.65 10.17 11.62 13.02 14.37 · · ·
4 11.79 13.32 14.80 16.22 17.62
5 14.93 16.47 17.96 19.41 20.83

...

We’ve found that all polar-separable solutions to the spatial BVP (in both r and θ), then, are

Unm(r, θ) = Jn(λnmr) [A cos(nθ) +B sin(nθ)] .

Appending the temporal part, we’ve obtained all polar-separable solutions to the BVP in (53),

unm(r, θ, t) = Jn(λnmr)[(Anm cos(nθ) +Bnm sin(nθ)) cos(λnmct)

+ (Cnm cos(nθ) +Dnm sin(nθ)) sin(λnmct)]

These are our standing waves, the fundamental modes of a circular drum’s vibration31: see Desmos.

31While this whole mess must be kept when building a general superposition (beware: the text erroneously claims
otherwise), the n,m-th mode in isolation has the simpler-looking profile, up to a time shift and rotation, of

Jn(λnmr) cos(nθ) cos(λnmct)
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Day 20: Circular Drumhead Cont.’d; Fourier-Bessel Series (Lesson 30)

We continuing our discussion of the circular drumhead IBVP (53),

utt = c2∆u,
u(x, y, t) = 0 for x2 + y2 = 1,
u(x, y, 0) = φ(x, y),
ut(x, y, 0) = ψ(x, y), 0 ≤ x2 + y2 ≤ 1.

We now ask if we can build u(r, θ, t) via a superposition of the standing waves found above,

u(r, θ, t)
?
=
∞∑
n=0

∞∑
m=1

Jn(λnmr)[(Anm cos(nθ) +Bnm sin(nθ)) cos(λnmct)

+ (Cnm cos(nθ) +Dnm sin(nθ)) sin(λnmct)] (55)

This reduces to

φ(r, θ) = u(r, θ, 0)
?
=

∞∑
n=0

∞∑
m=1

Jn(λnmr)(Anm cos(nθ) +Bnm sin(nθ)),

ψ(r, θ) = ut(r, θ, 0)
?
=

∞∑
n=0

∞∑
m=1

cλnmJn(λnmr)(Cnm cos(nθ) +Dnm sin(nθ)).

This may look somewhat daunting, but there is a familiar core. Let us focus on the first of these,

φ(r, θ)
?
=
∞∑
n=0

∞∑
m=1

Jn(λnmr)(Anm cos(nθ) +Bnm sin(nθ))

=
∞∑
n=0

[(
∞∑
m=1

AnmJn(λnmr)

)
cos(nθ) +

(
∞∑
m=1

BnmJn(λnmr)

)
sin(nθ)

]
.

φ(r, θ), at each fixed r, has period 2π in θ, and the outer sum over n is apparently its Fourier series.
The inner sums over m, then, must yield the familiar Fourier coefficients (23) (with L = π),

∞∑
m=1

A0mJ0(λ0mr) =: a0(r) =
1

2π

∫ 2π

0

φ(r, θ)dθ,

∞∑
m=1

AnmJn(λnmr) =: an(r) =
1

π

∫ 2π

0

φ(r, θ) cos(nθ)dθ, n > 0

∞∑
m=1

BnmJn(λnmr) =: bn(r) =
1

π

∫ 2π

0

φ(r, θ) sin(nθ)dθ, n > 0

The functions a0(r), an(r), and bn(r) are readily computable. How do we proceed to infer Anm, Bnm?

Being the eigenfunctions of the (irregular) SL BVP (54) with distinct eigenvalues, for each fixed n
the functions {Jn(λnmr)}∞m=1 are orthogonal with respect to the weight w(r) = r on 0 ≤ r ≤ 1:∫ 1

0

Jn(λnmr)Jn(λnkr)rdr = δmk

∫ 1

0

(Jn(λnmr))
2rdr =

δmk
2

(Jn+1(λnm))2
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We must apparently ask: given f(r) on 0 ≤ r ≤ 1, can it be expanded in these functions?

Though our SL BVP is irregular, it can be shown that the conclusions of our SL convergence
theorem (Day 7) still hold here: one may expand a “nice” (continuously differentiable) f(r),

f(r) =
∞∑
m=1

CmJn(λnmr) ⇐⇒ Cm =
2

(Jn+1(λnm))2

∫ 1

0

rf(r)Jn(λnmr)dr.

This is the Fourier-Bessel series for f(r). Applying this to each of a0(r), an(r), and bn(r) above,

A0m =
2

(J1(λ0m))2

∫ 1

0

ra0(r)J0(λ0mr)dr =
1

π(J1(λ0m))2

∫ 2π

0

∫ 1

0

φ(r, θ)J0(λ0mr)rdrdθ,

Anm =
2

(Jn+1(λnm))2

∫ 1

0

ran(r)Jn(λnmr)dr =
2

π(Jn+1(λnm))2

∫ 2π

0

∫ 1

0

φ(r, θ)Jn(λnmr) cos(nθ)rdrdθ

Bnm =
2

(Jn+1(λnm))2

∫ 1

0

rbn(r)Jn(λnmr)dr =
2

π(Jn+1(λnm))2

∫ 2π

0

∫ 1

0

φ(r, θ)Jn(λnmr) sin(nθ)rdrdθ

These integrals may be taken over the unit disk D1, and minor adjustments yield Cnm, Dnm:

A0m =

∫
D1
φ(r, θ)J0(λ0mr)dA

π(J1(λ0m))2
, C0m =

∫
D1
ψ(r, θ)J0(λ0mr)dA

πcλ0m(J1(λ0m))2

Anm =
2
∫
D1
φ(r, θ)Jn(λnmr) cos(nθ)dA

π(Jn+1(λnm))2
, Cnm =

2
∫
D1
ψ(r, θ)Jn(λnmr) cos(nθ)dA

πcλnm(Jn+1(λnm))2

Bnm =
2
∫
D1
φ(r, θ)Jn(λnmr) sin(nθ)dA

π(Jn+1(λnm))2
, Dnm =

2
∫
D1
ψ(r, θ)Jn(λnmr) sin(nθ)dA

πcλnm(Jn+1(λnm))2

(56)

With these choices of coefficients, (55) does indeed solve our IBVP (53).

Example: Solve the IBVP (53) with

φ(r, θ) = J3(9.76r) cos(3θ)− 1.5J1(7.02r) sin(θ)

ψ(r, θ) = 3J0(2.4r)

We could cite the integrals (56), but here it’s easier to achieve the IC’s with (55) by inspection:

u(r, θ, t) = J3(9.76r) cos(3θ) cos(9.76ct)− 1.5J1(7.02r) sin(θ) cos(7.02ct) +
3

2.4c
J0(2.4r) sin(2.4ct)

Warning: this was only so straightforward because 9.76, 7.02, and 2.4 are indeed32 among the λnm.

One can see this solution evolve in this Desmos demo.

One typically (outside of very special data) leaves the integrals (56) to a computer.

The series (55) is straining for Desmos. This video shows the evolution of a Gaussian bump.

If interested, you can find the .m MATLAB file which generated this video on Canvas.
32Of course, these are rounded. The exact values of the roots λnm are irrational (in fact, transcendental).
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Day 21: Elliptic Intro; Harmonic Functions; the Maximum Principle (Lessons 31,32)

How do elliptic problems arise, and what structure do they have?

We now finally turn to elliptic-type PDE’s, foremost among these being Laplace’s equation,

∆u = 0. (57)

Elliptic problems are very broad, frequently arising in:

• Steady-state phenomena, e.g. electrostatics (recall Day 1), the equilibrium shape of soap film
surfaces, or setting ut = utt = 0 in wave and heat problems.

• Separating variables in dynamical problems, e.g. the wave, heat, and Schrödinger equations.

Such problems have no initial conditions, only boundary conditions: we pose elliptic BVP’s.

Namely, elliptic equations are typically posed on a domain D ⊂ Rn, paired with conditions on ∂D:

• Dirichlet boundary conditions (g is a given function on ∂D),

u|∂D = g.

Arise from: fixed temperature (heat) or membrane (waves, soap films); equipotential surfaces
(conductors in electrostatics); infinite potential wells (Schrödinger).

• Neumann boundary conditions,
∂u

∂n

∣∣∣
∂D

= g.

Arise from: prescribed heat flux (heat), vertical force (waves), surface charge (electrostatics).

• Robin boundary conditions, (
αu+ β

∂u

∂n

) ∣∣∣
∂D

= g.

Arise from: environmental heat loss (heat), restoring force to variable equilibrium (waves).

These may be “mixed”, imposing different BC types on different portions of ∂D.

Before solving BVP’s, we see some properties of solutions to (57), called harmonic functions.

Consider the spherical mean MR[u](~x0) of a 3D33 function u at a fixed point ~x0,

MR[u](~x0) =
1

4πR2

∫
~y∈SR(~x0)

u(~y)dA =
1

4π

∫
n̂∈S1(~0)

u(~x0 +Rn̂)dA.

We have changed variables via ~y =: ~x0 +Rn̂ to integrate over the unit vectors n̂. Differentiating,

d

dR
(MR[u](~x0)) =

1

4π

∫
n̂∈S1(~0)

d

dR
[u(~x0 +Rn̂)] dA =

1

4π

∫
n̂∈S1(~0)

n̂ · ~∇u(~x0 +Rn̂)dA

=
1

4πR2

∫
~y∈SR(~x0)

(
~∇u(~y)

)
· ~dA =

1

4πR2

∫
BR(~x0)

(∆u) dV.

33The argument and conclusion here carries over nearly exactly to any dimension.
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Since MR[u](~x0)→ u(~x0) as R → 0, this formalizes our intuition that ∆u quantifies the difference
between u(~x0) and its mean value MR[u](~x0). In the special case that u is harmonic, we’ve found:

d

dR
(MR[u](~x0)) = 0 =⇒ MR[u](~x0) is independent of R.

Hence, the mean value of u on every sphere centered at ~x0 is the same, MR[u](~x0) = MR′ [u](~x0)!

Taking the limit R′ → 0 yields a structure of harmonic functions called the mean value property,

u(~x0) = MR[u](~x0).

That is: the mean value of u on any sphere is equal to its value at the center.

Example: The simplest manifestation of the MVP is in 1D harmonic functions, which are linear:

u(x) = C1x+ C2

Here, the MVP simply says that averaging points shifted right and left from x0 by R returns u(x0),

u(x0) =
1

2
[u(x0 −R) + u(x0 +R)] .

u(x0 −R)

u(x0)

u(x0 +R)

x0x0 −R x0 +R
x

u

The MVP is less trivial beyond 1D: harmonic functions are much broader than linear functions.

Example: The function u(x, y) = x2 − y2 is harmonic: see Desmos for an illustration of the MVP.

Example: In polar coordinates, x2 − y2 = r2(cos2(θ)− sin2(θ)) = r2 cos(2θ).

HW8: u(r, θ) = rn [A cos(nθ) +B sin(nθ)] is harmonic for any integer n (positive, negative34, or 0).

The MVP for these examples is illustrated in this Desmos demo.

A related, but broader, feature of harmonic functions is known as the (strong) maximum principle:

Theorem: If u is harmonic on a connected, bounded domain D ⊂ Rn and attains its maximum
value in the interior of D, then u must be constant on D.

34For the MVP to hold, u must be harmonic everywhere in BR(~x0), the ball of radius R centered at ~x0. For n < 0,
u(r, θ) = rn [A cos(nθ) +B sin(nθ)] is singular at r = 0, so the MVP need not hold if the ball includes the origin.
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Proof. This follows rather directly from the mean value property. If u attains its maximum at
~x0 ∈ D, meaning u(~x) ≤ u(~x0) for each ~x ∈ D, then since u(~x0) is equal to its mean value on any
sphere centered on ~x0 (and contained in D), this means u(~x) = u(~x0) on any such sphere. This
forces u to be constant at points near ~x0. One can apply this reasoning again to these new points
(as they also have u at its maximum) to “spread” the assurance of constancy throughout D35.

An implication: if u is not constant, it must achieve its maximum on the boundary ∂D.

You are encouraged to review the MVP Desmos demos again with this implication in mind.

These results are also true of minimum values. This yields an essential feature of common BVP’s:

Theorem: There exists at most one solution to the inhomogeneous Dirichlet problem

∆u = f, u|∂D = g.

Proof. If u1, u2 are two solutions, then u := u1 − u2 satisfies the homogeneous problem

∆u = 0, u|∂D = 0.

That is, u is harmonic and vanishes on the boundary. Since both the maximum and minimum
values of u are achieved on the boundary, u = 0 everywhere in D, and hence u1 = u2.

HW9: This is also true of the corresponding Robin problem. In the Neumann problem, any two
solutions must differ by a constant.

The MP can be strengthened: non-constant harmonic functions never have local extrema.

Intuition:36 if u(x, y) had a local maximum at (x0, y0), we generally expect37 uxx, uyy < 0 at (x0, y0),
but this is not possible if 0 = ∆u = uxx + uyy.

35This is a bit hand-wavy: rigorous proof requires some notions from topology, which are beyond this course.
36This is stated for 2D for brevity, but clearly carries over to any dimension
37This is not airtight: maxima can have uxx = uyy = 0. A bit of complex analysis is needed to fill the gap.
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Day 22: Laplace’s Equation in 2D: Circular geometry (Lessons 33,34)

How can we solve elliptic BVP’s?

We first consider the Dirichlet problem of Laplace’s equation on a 2D disk with radius 1,

urr +
1

r
ur +

1

r2
uθθ = ∆u = 0 for 0 ≤ r ≤ 1, u(1, θ) = g(θ) (58)

This has a variety of interpretations. It may describe:

• The equilibrium shape of a soap film spread across a wire that’s bent from a perfectly circular
shape by vertical distance g(θ) at each position θ.

• The electric potential inside a circle on which the potential g(θ) is known.

• The equilibrium temperature inside a disk with prescribed temperature g(θ) on the boundary.

As the PDE is the Helmholtz equation with λ = 0, we saw on Day 19 that u(r, θ) = R(r)Θ(θ) yields

Θn(θ) = A cos(nθ) +B sin(nθ),

0 = r2R′′ + rR′ − n2R.

HW8: independent radial solutions are R(r) = rn, r−n for n 6= 0 and R(r) = 1, ln(r) for n = 0.

In applications, regularity at r = 0 rules out r−n and ln(r), so separable solutions of interest are

un(r, θ) = rn [an cos(nθ) + bn sin(nθ)] (see Desmos)38

As the PDE is homogeneous, we ask whether the solution to (58) can be obtained via superposition,

u(r, θ)
?
=
∞∑
n=0

rn [an cos(nθ) + bn sin(nθ)] (59)

That is, we ask whether such a superposition can accommodate the boundary condition g(θ):

g(θ) = u(1, θ)
?
=
∞∑
n=0

[an cos(nθ) + bn sin(nθ)]

Of course, it can: this is the Fourier series of g(θ). Recalling (23) (with L = π), the coefficients are

a0 =
1

2π

∫ 2π

0

g(θ)dθ,

an =
1

π

∫ 2π

0

g(θ) cos(nθ)dθ, n > 0, (60)

bn =
1

π

∫ 2π

0

g(θ) sin(nθ)dθ, n > 0.

38Compare with images of actual soap films here and here.
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Example: The shape of a soap film spread across a wire bent according to

g(θ) = sin(θ) + 0.3 cos(2θ)− cos(3θ)

is simply (see Desmos)

u(r, θ) = r sin(θ) + 0.3r2 cos(2θ)− r3 cos(3θ)

We use (60) to express (59) in a simpler form. First: if the disk had radius R, (59) would read

u(r, θ) =
∞∑
n=0

( r
R

)n
[an cos(nθ) + bn sin(nθ)]

with the same formulas (60). Substituting these in,

u(r, θ) =
∞∑
n=0

( r
R

)n
[an cos(nθ) + bn sin(nθ)]

=
1

2π

∫ 2π

0

g(α)dα +
1

π

∞∑
n=1

( r
R

)n ∫ 2π

0

g(α) [cos(nα) cos(nθ) + sin(nα) sin(nθ)] dα

=
1

2π

∫ 2π

0

g(α)

[
1 + 2

∞∑
n=1

( r
R

)n
cos(n(α− θ))

]
dα

=
1

2π

∫ 2π

0

g(α)

[
1 +

∞∑
n=1

( r
R

)n (
ein(α−θ) + e−in(α−θ))] dα

=
1

2π

∫ 2π

0

g(α)

[
1 +

∞∑
n=1

(( r
R
ei(α−θ)

)n
+
( r
R
ei(α−θ)

)n)]
dα

=
1

2π

∫ 2π

0

g(α)

[
1 +

rei(α−θ)

R− rei(α−θ)
+

re−i(α−θ)

R− re−i(α−θ)

]
dα

=
1

2π

∫ 2π

0

g(α)

[
R2 − r2

R2 − 2rR cos(α− θ) + r2

]
dα

This final result is known as the Poisson integral formula,

u(r, θ) =
1

2π

∫ 2π

0

g(α)

[
R2 − r2

R2 − 2rR cos(α− θ) + r2

]
dα (61)

While typically not analytically evaluable, this can often be more efficiently computed than (59).

u(r, θ) is apparently a weighted average of the boundary values g(α), with weight the quantity in
brackets (the Poisson kernel). The denominator is the squared distance from (r, θ) to (R,α):
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(r, θ)

r θ

(R,α)

R α

d

Law of cosines:
d2 = R2 + r2 − 2rR cos(α− θ)

When averaging to compute u(r, θ), then, (61) heavily weights nearby points on the boundary.

To visualize the Poisson kernel’s weighting, see this Desmos demo (the sliders are s := r
R

, a := θ).

Example: Compare the outputs of (59) and (61) in Desmos for g(θ) given on 0 ≤ θ ≤ 2π by

g(θ) = sgn(θ − π) =

{
−1 0 < θ < π

1 π < θ < 2π

In fact, (61) can (with some difficulty) be evaluated exactly in this particular case, giving

u(r, θ) = sgn(θ − π) +
2

π
tan−1

(
1− r2

2r sin(θ)

)

We may also pose elliptic problems on unbounded domains (common in electrostatics). In particular,
we could consider the same problem on the exterior of a disk with radius R,

urr +
1

r
ur +

1

r2
uθθ = ∆u = 0 for r ≥ R, u(R, θ) = g(θ) (62)

Separable solutions are the same, but we now typically rule out those diverging at r →∞, leaving

un(r, θ) =
( r
R

)−n
[an cos(nθ) + bn sin(nθ)]

That is, the solution to (62) is simply (with a0, an, bn all the same as before, given by (60))

u(r, θ) =
∞∑
n=0

( r
R

)−n
[an cos(nθ) + bn sin(nθ)]

Reviewing the derivation, Poisson’s formula (61) still clearly holds, but with r, R switching roles.

Finally, perhaps the broadest problem in this vein is posed on an annulus, R1 ≤ r ≤ R2,

urr +
1

r
ur +

1

r2
uθθ = ∆u = 0 for R1 ≤ r ≤ R2,

u(R1, θ) = g1(θ)
u(R2, θ) = g2(θ)

(63)
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u = g1

u = g2

R1

R2

∆u = 0

We now have no reason to throw out any separable solutions. Indeed, all will be necessary:

u(r, θ) = a0 + b0 ln(r) +
∞∑
n=1

[
(anr

n + bnr
−n) cos(nθ) + (cnr

n + dnr
−n) sin(nθ)

]
(64)

We must now choose the coefficients such that both BC’s are met:

g1(θ) = u(R1, θ)
?
= a0 + b0 ln(R1) +

∞∑
n=1

[
(anR

n
1 + bnR

−n
1 ) cos(nθ) + (cnR

n
1 + dnR

−n
1 ) sin(θ)

]
g2(θ) = u(R2, θ)

?
= a0 + b0 ln(R2) +

∞∑
n=1

[
(anR

n
2 + bnR

−n
2 ) cos(nθ) + (cnR

n
2 + dnR

−n
2 ) sin(θ)

]
While the coefficients are not directly our an, bn, cn, dn, these are simply Fourier series, giving

a0 + b0 ln(R1) =
1

2π

∫ 2π

0

g1(θ)dθ, a0 + b0 ln(R2) =
1

2π

∫ 2π

0

g2(θ)dθ,

anR
n
1 + bnR

−n
1 =

1

π

∫ 2π

0

g1(θ) cos(nθ)dθ, anR
n
2 + bnR

−n
2 =

1

π

∫ 2π

0

g2(θ) cos(nθ)dθ,

cnR
n
1 + dnR

−n
1 =

1

π

∫ 2π

0

g1(θ) sin(nθ)dθ, cnR
n
2 + dnR

−n
2 =

1

π

∫ 2π

0

g2(θ) sin(nθ)dθ.

(65)

These constraints may be solved algebraically for the a0, b0, an, bn, cn, dn with which (64) solves (63).

Example: Consider the annulus problem (63) with g1(θ) = g2(θ) = sin(θ) at R1 = 1 and R2 = 2.

All of the integrals (65) vanish except the last row for n = 1, giving a0 = b0 = an = bn = 0 and

c1 + d1 = 1, 2c1 + 2−1d1 = 1 =⇒ c1 = 1/3, d1 = 2/3,

so that (64) reads (see Desmos)

u(r, θ) =
1

3

(
r +

2

r

)
sin(θ)
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Example: Now take g1(θ) = 1, g2(θ) = 2 at R1 = 1 and R2 = 4.

All of the integrals (65) vanish except the first row, giving

a0 = 1, a0 + b0 ln(4) = 2 =⇒ a0 = 1, b0 = 1/ ln(4),

so that (64) reads (see Desmos)

u(r, θ) = 1 +
ln(r)

ln(4)
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Day 23: Laplace’s Equation in 3D: Spherical geometry (Lesson 35)

How do we solve problems tailored to spherical geometry?

In 3D settings, spherical geometry is foundational. In spherical coordinates (r, θ, ϕ) defined by

z = r cos(θ), x = r sin(θ) cos(ϕ), y = r sin(θ) sin(ϕ),

one can show that the Laplacian ∆u = uxx + uyy + uzz may be written

∆u = urr +
2

r
ur +

1

r2
(uθθ + cot(θ)uθ) +

1

r2 sin2(θ)
uϕϕ

=
1

r2
(r2ur)r +

1

r2 sin(θ)
(sin(θ)uθ)θ +

1

r2 sin2(θ)
uϕϕ,

so that we may approach the Dirichlet problem inside the unit sphere 0 ≤ r ≤ 1,

∆u = 0 for 0 ≤ r ≤ 1, u(1, θ, ϕ) = g(θ, ϕ), (66)

via separation of variables. First separating the radial dependence, u(r, θ, ϕ) = R(r)Y (θ, ϕ), yields

1

R
(r2R′)′ +

1

sin(θ)Y
(sin(θ)Yθ)θ +

1

sin2(θ)Y
Yϕϕ = 0.

In the usual way, we have

1

R
(r2R′)′ = − 1

sin(θ)Y
(sin(θ)Yθ)θ −

1

sin2(θ)Y
Yϕϕ = k

for some constant k. Further separating the angular part, Y (θ, ϕ) = Θ(θ)Φ(ϕ) yields

sin(θ)

Θ
(sin(θ)Θ′)′ + k sin2(θ) = −Φ′′

Φ
= m2,

for some other constant m2: as seen in 2D, this must be a square integer by 2π-periodicity in ϕ,

Φm(ϕ) = A cos(mϕ) +B sin(mϕ).

The Θ equation, for which we seek nontrivial solutions on 0 ≤ θ ≤ π, now reads

Θ′′ + cot(θ)Θ′ +

(
k − m2

sin2(θ)

)
Θ = 0. (67)

That is, separation of variables has yielded the following radial, azimuthal, and polar ODE’s

0 = r2R′′ + 2rR′ − kR,
0 = Φ′′ +m2Φ,

0 = Θ′′ + cot(θ)Θ′ +

(
k − m2

sin2(θ)

)
Θ.

We have already solved the Φ equation, constraining m to be an integer. We turn to the Θ equation.
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This ODE is best understood by setting x := cos(θ) and defining y(x) by y(x(θ)) := Θ(θ), so

Θ′ = y′ · xθ = − sin(θ)y′, Θ′′ = sin2(θ)y′′ − cos(θ)y′,

yielding an ODE for y, posed on −1 ≤ x ≤ 1, reading

(1− x2)y′′ − 2xy′ +

(
k − m2

1− x2

)
y = 0.

We seek nontrivial solutions to this ODE, the general Legendre equation, satisfying |y(±1)| <∞.

This is an irregular SL BVP. We first consider the case m = 0 (corresponding to no ϕ dependence):

(1− x2)y′′ − 2xy′ + ky = 0, |y(±1)| <∞

This is Legendre’s equation. As with Bessel’s equation, one may construct power series solutions.

The essential result: only for k = `(`+ 1), ` ∈ Z, do there exist nontrivial solutions regular at both
x = ±1, and in this case the eigenfunction’s power series terminates, leaving a polynomial.

These eigenfunctions are known as the Legendre polynomials P`(x), given by Rodrigues’ formula

P`(x) =
1

2` · `!
d`

dx`
[
(x2 − 1)`

]
, ` = 0, 1, 2, . . .

P` is a degree-` polynomial with ` roots on −1 ≤ x ≤ 1, scaled to P`(1) = 1. The first several are:

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

...

x

P`(x)

−1 1
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Hence, m = 0 solutions to (67) are Θ`(θ) = P`(cos(θ)). The radial ODE with k → `(`+ 1) reads

r2R′′ + 2rR′ − `(`+ 1)R = 0,

a Cauchy-Euler equation. The ansatz R(r) = rα yields two independent solutions with α = `, −`−1.
For the interior Dirichlet problem, we disregard the singular solution r−`−1 and take R`(r) = r`.

All azimuthally symmetric separable solutions of interest for (66), then, are

u`(r, θ) = r`P`(cos(θ))

Superposing these solutions is sufficient for the common case of azimuthal symmetry g(θ, ϕ)→ g(θ),

u(r, θ, ϕ) =
∞∑
`=0

A`r
`P`(cos(θ)), (68)

provided that we can match any such boundary function g(θ):

g(θ) = u(1, θ, ϕ)
?
=
∞∑
`=0

A`P`(cos(θ))

As the eigenfunctions of a SL BVP, the polynomials {P`(x)}∞`=0 admit an orthogonality relation,∫ 1

−1

P`(x)Pk(x)dx = δk`

∫ 1

−1

(P`(x))2dx =
2

2`+ 1
δk`.

Though the SL BVP is irregular, it is once again the case that for any “nice” f(x) on −1 ≤ x ≤ 1,

f(x) =
∞∑
`=0

A`P`(x) ⇐⇒ A` =
2`+ 1

2

∫ 1

−1

f(x)P`(x)dx.

This is the Fourier-Legendre series of f(x). We may straightforwardly transform to θ:

g(θ) =
∞∑
`=0

A`P`(cos(θ)) ⇐⇒ A` =
2`+ 1

2

∫ π

0

g(θ)P`(cos(θ)) sin(θ)dθ (69)

With this choice of coefficients, (68) indeed solves (66) under azimuthal symmetry.

Example: Solve the BVP (66) with g(θ, ϕ) = g(θ) = 1 − cos(2θ). Here, u(r, θ, ϕ) may represent
the steady-state temperature of a solid ball with the surface held at this temperature distribution.

We can always resort to computing the integrals (69), but here we can deduce A` by writing

g(θ) = 1− cos(2θ) = 1− (2 cos2(θ)− 1) = (2− 2x2)
∣∣
x=cos(θ)

=

(
4

3
P0(x)− 4

3
P2(x)

) ∣∣
x=cos(θ)

=
4

3
P0(cos(θ))− 4

3
P2(cos(θ)),

so the only nonzero A` values are A0 = −A2 = 4/3, and the solution is

u(r, θ, ϕ) =
4

3
− 4

3
r2P2(cos(θ)) =

4

3
− 2

3
r2(3 cos2(θ)− 1)

Visualize this solution via its level sets (e.g. surfaces of constant temperature) in Desmos here.
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Day 24: Laplace’s Equation in 3D: Spherical harmonics (None)

How can we expand arbitrary functions on the sphere?

Having completed the azimuthally symmetric case, we return to the general Legendre equation,

(1− x2)y′′ − 2xy′ +

(
`(`+ 1)− m2

1− x2

)
y = 0, |y(±1)| <∞.

Once again, nontrivial BVP solutions exist only for k → `(`+ 1) (as written), and further ` ≥ |m|.

These eigenfunctions are the associated Legendre polynomials39 P`m(x) (of degree ` and order m),

P`m(x) := (1− x2)m/2
dm

dxm
[P`(x)]

=
(1− x2)m/2

2` · `!
d`+m

dx`+m
[
(x2 − 1)`

]
, |m| ≤ ` = 0, 1, 2, . . .

Our polar solutions are therefore Θ`m(θ) = P`m(cos(θ)); a number of these are listed below40.

m

`

P`m(cos(θ)) 0 1 2 3
0 1 0 0 0
1 cos(θ) sin(θ) 0 0

2 1
2
(3 cos2(θ)− 1) 3 sin(θ) cos(θ) 3 sin2(θ) 0

3 1
2
(5 cos3(θ)− 3 cos(θ)) 3

2
(5 cos2(θ)− 1) sin(θ) 15 cos(θ) sin2(θ) 15 sin3(θ)

...

As usual, the associated Legendre polynomials {P`m(x)}∞`=|m| enjoy an orthogonality relation,∫ 1

−1

P`m(x)Pkm(x)dx = δk`

∫ 1

−1

(P`m(x))2dx =
2(`+m)!

(2`+ 1)(`−m)!
δk`.

We have now found all of the distinct fundamental angular solutions,

Θ`m(θ)Φm(ϕ) = P`m(cos(θ))(A cos(mϕ) +B sin(mϕ)), 0 ≤ m ≤ ` = 0, 1, 2, . . .

It is customary to collate these into the (real) spherical harmonics Y`m(θ, ϕ), allowing −` ≤ m ≤ `:

Y`m(θ, ϕ) =



√
2`+ 1

2π

(`− |m|)!
(`+ |m|)!

P`|m|(cos(θ)) sin(|m|ϕ) m < 0√
2`+ 1

4π
P`(cos(θ)) m = 0√

2`+ 1

2π

(`−m)!

(`+m)!
P`m(cos(θ)) cos(mϕ) m > 0

(70)

39Caution: P`m(x) is only actually a polynomial for m even. For m odd, it includes a factor of
√

1− x2
40In general, −` ≤ m ≤ ` is permitted, but in fact P`,−m(x) ∝ P`m(x), so we have only listed P`m(x) for m ≥ 0:

P`,−m(x) = (−1)m
(`−m)!

(`+m)!
P`m(x)
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For instance,

Y1,−1(θ, ϕ) =

√
3

4π
sin(θ) sin(ϕ), Y1,0(θ, ϕ) =

√
3

4π
cos(θ), Y1,1(θ, ϕ) =

√
3

4π
sin(θ) cos(ϕ).

These are defined so that they are orthonormal over the unit sphere:∫
S1

Y`m(θ, ϕ)Ykn(θ, ϕ)dA =

∫ 2π

0

∫ π

0

Y`m(θ, ϕ)Ykn(θ, ϕ) sin(θ)dθdϕ = δk,`δn,m

This makes it particularly simple to expand an angular function g(θ, ϕ) in spherical harmonics:

g(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

A`mY`m(θ, ϕ) ⇐⇒ A`m =

∫
S1

g(θ, ϕ)Y`m(θ, ϕ)dA (71)

This image (by Wikipedia user Twistar48: see it animated here) shows the spherical harmonics Y`m(θ, ϕ) as
distortions of the sphere’s radius at each (θ, ϕ).
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Spherical harmonics are an essential tool for parameterizing spherical functions in many fields: as-
tronomy, cosmology, geodesy, electrostatics, quantum mechanics, chemistry, computer graphics, etc.

Finally, combining with the (interior) radial solution R`(r) = r` yields all separable solutions,

u`m(r, θ, ϕ) = R`(r)Y`m(θ, ϕ) = r`Y`m(θ, ϕ),

and we seek the solution to (66) via superposition,

u(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

A`mr
`Y`m(θ, ϕ) (72)

Matching the BC at r = 1, this indeed solves (66) if A`m are chosen according to (71).

Example: Solve the BVP (66) with g(θ, ϕ) = 1− cos(2θ) + sin(2θ) sin(ϕ)− sin2(θ) cos(θ) cos(2ϕ).

We seek to express g(θ, ϕ) in terms of our angular solutions. We observe the ϕ dependence of each
term to infer m and compare the θ dependence to the appropriate column in the table of P`m(cos(θ)).

In the previous example, we saw that 1− cos(2θ) gives rise to u1(r, θ, ϕ) = 4
3
− 2

3
r2(3 cos2(θ)− 1).

The term sin(2θ) sin(ϕ) has m = 1, and sin(2θ) ∝ P2,1(cos(θ)). Hence, this gives rise to u2(r, θ, ϕ) =
r2 sin(2θ) sin(ϕ).

The term sin2(θ) cos(θ) cos(2ϕ) has m = 2, and sin2(θ) cos(θ) ∝ P3,2(cos(θ)). Hence, this gives rise
to u3(r, θ, ϕ) = r3 sin2(θ) cos(θ) cos(2ϕ). Combining,

u(r, θ, ϕ) = u1 + u2 − u3 =
4

3
− 2

3
r2(3 cos2(θ)− 1) + r2 sin(2θ) sin(ϕ)− r3 sin2(θ) cos(θ) cos(2ϕ)

Visualize this solution via its level sets (e.g. surfaces of constant temperature) in Desmos here.

One can solve Dirichlet problems on the exterior of a ball, or in the shell between two spheres,
precisely as in 2D: include all radial solutions r`, r−`−1 (shell) or just the decaying r−`−1 (exterior).

91

https://www.desmos.com/3d/dzqrntvx3m


Day 25: Spherical waves (None)

How do 3D waves propagate in spherical geometry?

We now consider the analogue to the circular drumhead IBVP in 3D, posed inside the unit sphere:

utt = c2∆u,
u(1, θ, ϕ, t) = 0,
u(r, θ, ϕ, 0) = φ(r, θ, ϕ),
ut(r, θ, ϕ, 0) = ψ(r, θ, ϕ), 0 ≤ r ≤ 1.

(73)

Similar IBVP’s describe sound or EM waves from a concentrated source, or seismic waves through
the earth41. As in 2D, separating u(r, θ, ϕ, t) = U(r, θ, ϕ)T (t) yields the Helmholtz equation,

T ′′

c2T
=

∆U

U
= −λ2 =⇒ ∆U + λ2U = 0, U(1, θ, ϕ) = 0,

T ′′ + c2λ2T = 0.

As usual for waves, the T equation yields temporal oscillations,

T (t) = A cos(λct) +B sin(λct).

Spatially, we have an elliptic BVP. We’ve now seen that elliptic BVP’s with zero BC often only
admit u = 042: the Helmholtz eigenvalue problem seeks those special values of λ yielding otherwise.

In spherical coordinates, our elliptic BVP reads

1

r2
(r2Ur)r +

1

r2 sin(θ)
(sin(θ)Uθ)θ +

1

r2 sin2(θ)
Uϕϕ + λ2U = 0, U(1, θ, ϕ) = 0

We now proceed in much the same way as Day 23, separating U(r, θ, ϕ) = R(r)Y (θ, ϕ) to obtain

1

R
(r2R′)′ + λ2r2 +

1

sin(θ)Y
(sin(θ)Yθ)θ +

1

sin2(θ)Y
Yϕϕ = 0,

=⇒ 1

R
(r2R′)′ + λ2r2 = − 1

sin(θ)Y
(sin(θ)Yθ)θ −

1

sin2(θ)Y
Yϕϕ = k,

for some constant k. We now note that the angular problem is precisely that seen on Days 23-24,

sin(θ)(sin(θ)Yθ)θ + k sin2(θ)Y + Yϕϕ = 0.

Nontrivial solutions require k = `(`+1): they are the spherical harmonics Y`m(θ, ϕ) defined in (70).

We may now turn to a new problem, the radial equation:

r2R′′ + 2rR′ + (λ2r2 − `(`+ 1))R = 0, R(1) = 0, |R(0)| <∞. (74)

This is yet another irregular SL BVP. Setting x := λr and R(r) =: y(x(r)), the ODE reads

x2y′′ + 2xy′ + (x2 − `(`+ 1))y = 0 (75)

41Exactly as written, this prototype problem describes, say, sound in a closed spherical chamber.
42This feature is what gave us uniqueness results.
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This is reminiscent of Bessel’s equation. Indeed, setting y(x) =: w(x)√
x

, so that

y′ =
w′√
x
− w

2x3/2
, y′′ =

w′′√
x
− w′

x3/2
+

3

4

w

x5/2
,

this ODE (multiplied by
√
x) now reads

x2w′′ + xw′ +

(
x2 −

(
`+

1

2

)2
)
w = 0.

This is Bessel’s equation with order α = `+ 1
2
: w is a linear combination of J`+1/2, Y`+1/2, meaning

y(x) = A
J`+1/2(x)√

x
+B

Y`+1/2(x)√
x

Due to the present context, solutions to (75) are dubbed spherical Bessel functions:

j`(x) :=

√
π

2x
J`+1/2(x) order ` spherical Bessel function of the first kind,

y`(x) :=

√
π

2x
Y`+1/2(x) order ` spherical Bessel function of the second kind.

Note that y` diverges (and j` is finite) at x→ 0. Recalling the definition of Jα(x), consider43

j0(x) =

√
π

2x
J1/2(x) =

√
π

2x

∞∑
m=0

(−1)m

m! · Γ(m+ 3/2)

(x
2

)2m+1/2

=
√
π
∞∑
m=0

(−1)m

22m+1 ·m! · Γ(m+ 3/2)
x2m.

Noting that Γ(1
2
) =
√
π44 and Γ(m+ 3

2
) = (m+ 1

2
) · (m− 1

2
) · · · 3

2
· 1

2
· Γ(1

2
), the denominator is

22m+1 ·m! · Γ
(
m+

3

2

)
= [2m ·m!]

[
2m+1Γ

(
m+

3

2

)]
= [2m(2m− 2) · · · 4 · 2][(2m+ 1)(2m− 1) · · · 3 · 1]

√
π

= (2m+ 1)!
√
π

That is, we apparently have the surprisingly simple identity

j0(x) =
∞∑
m=0

(−1)m

(2m+ 1)!
x2m =

sin(x)

x
.

Recall from HW8 that

(x−nJn(x))′ = −x−nJn+1(x), ⇐⇒ 1

x

d

dx

(
x−nJn(x)

)
= −x−(n+1)Jn+1(x)

One may readily check that j` inherits this identity. Iterating yields Rayleigh’s formula45:

j`(x) = (−x)`
(

1

x

d

dx

)`
sin(x)

x

43Recall that the Gamma function is a generalization of the factorial to non-integers, Γ(x) :=
∫∞
0
tx−1e−tdt.

44This is the Gaussian area
∫∞
−∞ e−x

2

dx =
√
π in disguise.

45While it is less useful to us, one may also find y`(x) = −(−x)`
(

1

x

d

dx

)`
cos(x)

x
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This may be used to generate any j` desired, e.g.

j0(x) =
sin(x)

x

j1(x) =
sin(x)

x2
− cos(x)

x

j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x2

...

It is clear from these expressions that j` is oscillatory– the first several are plotted below.

x

j`(x)

20

1

Returning to our radial BVP (74): ODE solutions finite at r → 0 are apparently R(r) = j`(λr).

Imposing R(1) = 0, nontrivial solutions are R`k(r) = j`(λ`kr), with λ`k the kth positive root ot j`.

These still do not admit an analytical formula in general, but they are again well-tabulated.

`

k

λ`k 0 1 2 3 4
1 3.14 4.49 5.76 6.99 8.18
2 6.28 7.73 9.10 10.42 11.70
3 9.42 10.90 12.32 13.70 15.04 · · ·
4 12.57 14.07 15.51 16.92 18.30
5 15.71 17.22 18.69 20.12 21.53

...

It should come as no surprise that the functions {j`(λ`kr)}∞k=1 admit an orthogonality relation,∫ 1

0

j`(λ`kr)j`(λ`nr)r
2dr = δnk

∫ 1

0

(j`(λ`kr))
2r2dr =

δnk
2

(j`+1(λ`k))
2,

and once again one may expand any “nice” (continuously differentiable) f(r) on 0 ≤ r ≤ 1,

f(r) =
∞∑
k=1

Ck j`(λ`kr) ⇐⇒ Ck =
2

(j`+1(λ`k))2

∫ 1

0

r2f(r)j`(λ`kr)dr.

Putting everything together, all spherical-separable solutions to the BVP in (73) are

u`mk(r, θ, ϕ, t) = j`(λ`kr)Y`m(θ, ϕ) [A`mk cos(λ`kct) +B`mk sin(λ`kct)] ,
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These are the fundamental modes of spherical waves. A general solution may be expanded

u(r, θ, ϕ, t) =
∞∑
`=0

∑̀
m=−`

∞∑
k=1

j`(λ`kr)Y`m(θ, ϕ) [A`mk cos(λ`kct) +B`mk sin(λ`kct)] (76)

One should convince themselves that this solves the IBVP (73) provided that one takes46

A`mk =
2

(j`+1(λ`k))2

∫
B1

φ(r, θ, ϕ)j`(λ`kr)Y`m(θ, ϕ)dV,

B`mk =
2

cλ`k(j`+1(λ`k))2

∫
B1

ψ(r, θ, ϕ)j`(λ`kr)Y`m(θ, ϕ)dV (77)

Conceptually, this is the result of expanding φ(r, θ, ϕ) (or ψ) in the spherical harmonics Y`m at each
fixed r, and then expanding the resulting expansion coefficients (functions of r) in j`(λ`kr).

Example: Solve the IBVP (73) with

φ(r, θ, ϕ) = j2(12.32r) sin2(θ) cos(2ϕ)− 0.4j1(4.49r) cos(θ)

ψ(r, θ, ϕ) = sin(2πr)/r

As usual, one could resort to the integrals (77) in general, but we can also read off the appropriate
coefficients by recognizing each term as the spatial part of a separable solution:

j2(12.32r) sin2(θ) cos(2ϕ) ∝ j2(λ2,3r)Y2,2(θ, ϕ)

j1(4.49r) cos(θ) ∝ j1(λ1,1r)Y1,0(θ, ϕ)

sin(2πr)/r ∝ j0(λ0,2r)Y0,0(θ, ϕ)

Appending the appropriate temporal components for each separable solution, we have

u(r, θ, ϕ, t) = j2(12.32r) sin2(θ) cos(2ϕ) cos(12.32ct)− 0.4j1(4.49r) cos(θ) cos(4.49ct) +
sin(2πr)

r

sin(2πct)

2πc

Caution: in order for this to be so straightforward, the order of j` must match the degree of Y`m
in each term, and the coefficient inside j` (the 12.32, 4.49, and 2π above) must be a root of j`.

46B1 denotes the unit ball in R3.
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Day 26: Inhomogeneous Problems: Green’s Functions (Lesson 36)

How can we handle sources in elliptic equations?

The prototypical inhomogeneous elliptic PDE is the Poisson equation (posed on a domain D ⊂ Rn)

∆u = f,

for some given function f on D. Frequently, f is a source of some kind:

• In steady-state temperature, −f is a heat source (e.g. a space heater in a room).

• In steady-state damped waves, f may be a (downward) force applied to the string/membrane.

• In electrostatics, −f is the charge density sourcing the electric potential.

Indeed, a taut membrane propagating damped waves in the presence of gravity has wave equation

utt = c2∆u− βut − g,

so that the equilibrium shape of the membrane (where utt = ut = 0) satisfies

∆u =
g

c2
.

A powerful idea is to consider f a collection of impulses at each point in D:

f(~x) =

∫
~y∈D

f(~y)δ(~x− ~y)dV

This leads us to seek a Green’s function G(~x, ~x0), a response to an impulse at ~x0 ∈ D, solving

∆u = δ(~x− ~x0).

By superposition: given such a G, a solution to ∆u = f will simply be

u(~x) =

∫
~y∈D

f(~y)G(~x, ~y)dV.

Typically, however, we don’t want just any solution: we seek the unique solution to a BVP, say

∆u = f, u|∂D = g. (78)

How can we tailor the Green’s function G(~x, ~x0) to particular BC’s? Begin by observing∫
∂D

ψ(~∇φ) · ~dA =

∫
D

(ψ∆φ+ ~∇ψ · ~∇φ)dV

for any functions φ, ψ onD. Reversing the roles of φ, ψ and subtracting yields Green’s second identity,∫
D

(ψ∆φ− φ∆ψ)dV =

∫
∂D

(
ψ
∂φ

∂n
− φ∂ψ

∂n

)
dA
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Now let us take ψ(~y) = u(~y) solving (78) and φ(~y) = G(~y, ~x0) (with ~x0 fixed). The above reads∫
~y∈D

(u(~y)δ(~y − ~x0)−G(~y, ~x0)f(~y))dV =

∫
∂D

(
u
∂G

∂n
−G∂u

∂n

)
dA

=⇒ u(~x0) =

∫
~y∈D

G(~y, ~x0)f(~y)dV +

∫
∂D

(
g
∂G

∂n
−G∂u

∂n

)
dA

This is a consistency condition for the solution to (78) with any Green’s function. If we choose the
Green’s function G(~x, ~x0) to itself have zero Dirichlet boundary conditions, i.e. to solve the BVP

∆G = δ(~x− ~x0), G|∂D = 0, (79)

then this consistency condition reduces47 to an explicit formula for the u solving (78):

u(~x) =

∫
~y∈D

f(~y)G(~x, ~y)dV +

∫
~y∈∂D

g(~y)
∂G

∂n
(~y, ~x)dA (80)

That is: if one can somehow solve (79) for G, then one can solve any inhomogeneous problem (78).

The Green’s function G of interest is a property of the homogeneous PDE and the geometry of D.

Even for the Laplacian, constructing G in a given geometry is rather nontrivial.

Perhaps the simplest geometry is the 2D limiting case D → R2. In this limit, boundary effects are
negligible, so we might seek an isotropic impulse response, depending only on ‖~x− ~x0‖.

Away from ~x0, G(~x, ~x0) should satisfy ∆G = 0. From Day 22, the only isotropic solutions are

G(~x, ~x0) = A+B ln(‖~x− ~x0‖)

What constraint is imposed by the requirement ∆G = δ(~x− ~x0)? At the very least,

1 =

∫
D1(~x0)

δ(~x− ~x0)dA =

∫
D1(~x0)

∆G(~x, ~x0)dA

=

∫
S1(~x0)

n̂ · ~∇G(~x, ~x0)ds =

∫
S1(~x0)

B

‖~x− ~x0‖
ds = 2πB,

or B = 1
2π

. Being arbitrary, we may set A = 0, so that the full-space Green’s function in 2D is

G(~x, ~x0) =
1

2π
ln(‖~x− ~x0‖) (81)

By (80), a solution to the Poisson equation on R2 is

u(~x) =
1

2π

∫
~y∈R2

f(~y) ln(‖~x− ~y‖)dA

Generally, it is much more challenging to find G on a domain other than a full Rn.

47We’ve used the nontrivial fact that G(~x, ~y) is symmetric, so G(~x, ~y) = G(~y, ~x), when G is defined by (79).
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Under sufficient symmetry: the method of images combines the full-space impulse response (81) for
the given ~x0 ∈ D with the responses for a collection of other points ~xi /∈ D to match the BC.

Consider D = D1, the unit disk in R2. Given ~x0 ∈ D1, we seek an ~x1 /∈ D1 with the property that

G̃(~x, ~x0) :=
1

2π
ln(‖~x− ~x0‖)−

1

2π
ln(‖~x− ~x1‖) =

1

2π
ln

(
‖~x− ~x0‖
‖~x− ~x1‖

)
satisfies that G̃(~x, ~x0) is constant for ~x ∈ S1 (the boundary unit sphere).

That is, we require the ratio ‖~x−~x0‖
‖~x−~x1‖ to be independent of ~x ∈ S1.

1
~x0

~x1

~x

θ0

‖~x− ~x0‖
‖~x− ~x1‖

It is not obvious that such an ~x1 exists, but if it does, it must share ~x0’s polar coordinate θ0.

Moreover, comparing when ~x sits at angles θ0 and θ0 + π, the radial coordinates r0, r1 must satisfy

1− r0

r1 − 1
=

1 + r0

1 + r1

=⇒ r1 =
1

r0

We have therefore found: if a working ~x1 exists, it must be ~x1 = 1
r20
~x0. This identification gives

G̃(~x, ~x0) =
1

2π
ln

(
‖~x− ~x0‖
‖~x− 1

r20
~x0‖

)
=

1

4π
ln

(
r2 − 2rr0 cos(θ − θ0) + r2

0

r2 − 2 r
r0

cos(θ − θ0) + 1
r20

)
,

with (r, θ) the polar coordinates of ~x. For r = 1, this indeed reduces to a constant, ln(r2
0)/4π.

Subtracting this off, we’ve found the Green’s function satisfying G(~x, ~x0) = 0 for ~x ∈ S1:

G(~x, ~x0) =
1

2π
ln

(
‖~x− ~x0‖
‖r0~x− 1

r0
~x0‖

)
=

1

4π
ln

(
r2 − 2rr0 cos(θ − θ0) + r2

0

r2
0r

2 − 2rr0 cos(θ − θ0) + 1

)
(see Desmos)

Note this is manifestly symmetric under (r, θ)↔ (r0, θ0). To fully implement (80), we must compute

∂G

∂r
(~x, ~x0) =

1

2π

[
r − r0 cos(θ − θ0)

r2 − 2rr0 cos(θ − θ0) + r2
0

− r0(rr0 − cos(θ − θ0))

r2
0r

2 − 2rr0 cos(θ − θ0) + 1

]
This is quite the mess, but it simplifies quite dramatically for r = 1, which is what is needed:

∂G

∂r

∣∣∣
r=1

=
1

2π

1− r2
0

1− 2r0 cos(θ − θ0) + r2
0
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Writing ~y→ ~x ′ = (r′, θ′) in (80), the solution to (78) for D = D1 ⊂ R2 and BC u(1, θ) = g(θ) is

u(r, θ) =
1

4π

∫
~x ′∈D1

f(r′, θ′) ln

(
r2 − 2rr′ cos(θ − θ′) + r′2

r′2r2 − 2rr′ cos(θ − θ′) + 1

)
dA+

1

2π

∫ 2π

0

g(θ′)
1− r2

1− 2r cos(θ′ − θ) + r2
dθ′

The first of these integrals matches the PDE inhomogeneity f , while the latter matches the BC g.

Indeed, one might recognize the latter integral as the (R = 1) Poisson integral formula from Day 22.

Example: One can see the output of the above formula (and compare to the homogeneous solution)
for g(θ) = cos(3θ) and f(r, θ) = A (constant) in this Desmos demo. Physically, one should have in
mind a membrane under gravity (mentioned above).

99

https://www.desmos.com/3d/9mkutvgybc

