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Day 1: Introduction and terminology (Text: Lessons 1, 26)

Intro/Logistics (see Canvas syllabus):

e About me

Course structure

Grading policy

Homework

Prerequisites

Office Hours: Tuesdays 1-2PM (EH 1832) & Thursdays 4-6PM (EH B737)

Recall that a differential equation is an equation containing derivatives of one or more unknown
functions (dependent variables) with respect to one or more independent variables.

You have studied the case of one independent variable: ordinary differential equations (ODE’s).

Example: A simple ODE for an unknown function y(z) is y” + A%y = 0, with general solution

y(x) = Acos(Ax) + Bsin(Ax).

Moving forward, one should be able to recognize such solutions reflexively.
m

We study the alternative: a partial differential equation (PDE) is one in which the unknown(s)
depend on more than one variable, thereby involving partial derivatives.

Differential equations are essential to the modeling of physical phenomena.

Some famous PDE’s fundamental to physics:

(i) Schrodinger’s equation: single-particle quantum mechanics.

ov h?
h— = ——— AU + V(X T
(4 y QmA + V(X 1)

A here is the Laplacian, A 1= V2 = 8‘9—; + 59—;2 + %.

(ii) Maxwell’s equations: classical electricity and magnetism.
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(iii) Einstein’s equation: general relativity.
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It is helpful to introduce vocabulary classifying PDE’s, characterizing:
e Order: the highest order derivative present in the equations.
e Dimension: number of independent variables (often, specifically spatial variables).

e Number of dependent variables (unknown functions).
Multiple unknowns = multiple equations = system of PDE’s.
Systems of PDE’s are generally beyond the scope of this course.

e Structure: a PDE is linear if the dependent variables and their derivatives only appear in a
linear combination. E.g., a first-order linear PDE for the unknown u(x,y) has the form

A(z,y)u, + B(z,y)u, + C(z,y)u = D(x,y). (2)

Above,

(i) is a second-order linear PDE, spatially 3D;

(ii) is a first-order system of linear PDE’s, spatially 3D;

(iii) is a second-order system of nonlinear PDE’s on 4D spacetime.

Let us see how some of the most important PDE’s we’ll study arise from the system (1).
Example: In electrostatics, all charges are at rest and fields have settled to a steady state.
This means E, = B, = J = 0, so that the system (1) reduces to
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The last two of these imply that B = 0 under physical boundary conditions, while VxE=0is
equivalent’ to E = V¢ for some function ¢ (electric potential). The remaining equation now reads

A¢ = p/eo.

This ubiquitous PDE is the Poisson equation. Away from charges, it reduces to Laplace’s equation,

Ao = 0.

We will study both of these PDE’s in detail.
[

'When operating on a simply connected domain. Even when not, however, the implication still goes one way (the
important way for physicists): solving A¢ = p/eg for ¢ and taking E = V¢ will give a solution for E.



Example: In vacuum, where there are no charges present, one has p = 0 and J= 0, so
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Taking the curl of the second equation and using the double-curl identity

one finds

This is the wave equation (with speed ¢ := (upeo)~"/?), which we will also study in detail.

Similar manipulations yield the same equation for B.

As nearly all foundational techniques hinge upon linearity, we almost exclusively treat linear PDE’s.

It is worthwhile, then, to characterize linearity more precisely.

First, a (partial) differential operator is a mapping of an input function to an output function,

u +— Olul, involving (partial) derivatives of the input w.
Example: The mapping on functions u(z,y) defined by
u— Olu] :==u-u,

is a partial differential operator.

Definition: A (partial) differential operator L is called linear provided that
L[clul + CQUQ] = ClL[Ul] -+ CQL[UQ]

for any input functions w1, us and constants ¢, cs.

Note that the operator defined by (3) is nonlinear.

Definition: A DE is now called linear if it can be expressed in the form
Llul =g

for some differential operator L and function g, often called the source.



A linear DE is further called homogeneous if g = 0, i.e. if it reads

Lu] =0.
O
Example: The PDE (2) is linear with ¢ = D(z,y) and
L = A(x, y)2 + B(z, y)2 + C(x,y)
ox dy
Indeed, this L is the most general first-order linear partial differential operator in two variables.
O

The key property making linear equations so immensely convenient is the principle of superposition:

Theorem: Let L be a linear differential operator. If u; and uy are, respectively, solutions to the
linear DE’s L{u] = ¢ and L[u] = go, then @ := cyuy + couy satisfies the DE

Llu] = c191 + c292.
Proof. By linearity of the operator L,

Lia) = Llcyuy + coug] = ¢ L{ug] 4 coLjug] = c191 + c26o.

In particular, if u; and wus both satisfy L[u] = 0, the so does every linear combination .

The most general second-order linear PDE in two variables (z,y) reads
Aty + Bugy + Cuyy + Dug + Buy + Fu = G,

where each of A, B, C, D, E, F, and G may be functions of (z,y).

Such equations will be the primary focus of this course. There are three basic categories:

(a) Parabolic (B? —4AC = 0). Describe heat flow and diffusion.
Prototype: u; = u,, (heat equation).

(b) Hyperbolic (B? —4AC > 0). Describe vibrations and wave motion.
Prototype: uy = u,, (wave equation).

(c) Elliptic (B% — 4AC < 0). Describe steady-state phenomena.
Prototype: ug, + u,,, = 0 (Laplace’s equation).



Day 2: Method of Characteristics (Lesson 27)
How can we construct solutions to first-order linear PDE’s?

Recall: a first-order linear PDE in two variables has the form (2). With a slight relabelling, this is

Az, t)uy + B(z, t)uy + C(x, t)u = D(x, ). (4)

To “solve” such problems, we must establish what this means. Recall that solving a first-order ODE
y = [ty

requires an initial condition y(tg) = yo— solutions have an arbitrary constant’s worth of freedom.

What information must we provide to solve (4)7 Let us consider a very simple example.

Example:
Uy +2u; =0

R 1
What does this equation say? Setting v = (2

), note that this equation is equivalent to

V- -Vu=0.

That is, this equation states that the directional derivative of u along v is 0: there is a particular
direction through the xt-plane along which solutions u do not change.

The PDE effectively propagates information along this direction. In particular, we have
u(zo, o) = ug — u(zo + s,tg + 28) = ug Vs € R.

If we foliate the xt-plane by lines with direction v, called characteristics of the PDE, say

;Y’IO(S) = ('1'0 + 8, 25)7
then specifying u at a single point along each characteristic v,, will determine u everywhere.

t

Information on the black curve propagates along the blue characteristics, determining v everywhere.



Apparently, then, we may naturally and meaningfully pose the initial value problem

Uy + 2u; = 0, u(z,0) = ¢(x).

Indeed, the initial condition specifies u on each characteristic 7,,(s) at s = 0:
u (f?xo (0)) = u(.%’o, 0) = ¢($0)

t

X

1

The schematic for propagating the information in a standard IVP for this PDE.

Let us solve for u(z,t). We fix the point (x,t) and find the 7., which passes through it:
(,t) = Yoo (s) = (w0 + 8,28) = s=1t/2, zo=x—1/2,
so the characteristic 7,_;/2 passes through (z,t) at s = ¢/2.

t

’Vx—t/2

(z,1)

/e~ t/2 !

Hence we have

u(,t) =1 (Faaja(t/2)) = u(Fo1y2(0)) = [0z — £/2)
Observing that ¢ is arbitrary, we call u(z,t) = ¢(x — t/2) the general solution to this PDE.

While ODE solutions allow arbitrary constants, PDE solutions allow arbitrary functions.



This example was simple. Mild complications in this same scheme arise for the general problem (4).
Let us add one more layer of complexity:

Example: Solve the IVP
Uy + 2us +u = x, u(z,0) = ¢(z).

: : oL 1 : o o
Like before, and again setting v = (2), we can recast in terms of a directional derivative:

v-Vu+u=nz.
The problem apparently only involves a single derivative: morally, this is an ODE in the v direction.

To make this more than moral, fix zy and consider the function f(s) := (u o ¥y,)(s). Then

f(s) =1,(8) - (Vo g )(s)
= (V- V) 0 Fuy ()
= (T — u) 0 Fgo(s)
=9+ s — f(s)

That is, f(s) satisfies the simple ODE
f'(s) + f(s) = xo + s,
to which the general solution (using, say, the integrating factor e®) is
f(s)=z0o+s—1+Ce™".
To determine C, note that
zg — 14+ C = f(0) = u(Yz(0)) = u(wo,0) = ¢(xo),

requiring C' = ¢(xg) + 1 — xp, and hence

f(s)=xg+s—1+ (d(xg) +1—mp)e™".
Information propagates along characteristics as before; this computation tells us how it propagates.

In the previous example, the propagation was trivial: (u o 7,,)(s) was simply constant. More gen-
erally, it is a function of s determined by a first-order linear ODE and the initial conditions.

We may now determine u(x,t) in much the same way as before, using (x,t) = v,_4/2(t/2):
U(l’, t) =u (Vx—t/Q(t/2)) = (u © ’796—15/2)@/2)
= (z—t/2) +t/2 =1+ [p(x —t/2) +1 — (x —t/2)] e/
=z —1+4[p(x —t/2) +1—2+t/2]e




Note that we’ve simply substituted o = z — ¢/2 and s = ¢/2 into our solution for f(s).

The final step is to allow variable coefficients to u, and wu;, adding still more complexity:
Example: Solve the IVP
tu, + zus +u = o, u(z,0) = ¢(z) for x> 0.
We proceed in much the same way, recasting in terms of a directional derivative,
V-Vu+u= x,

. . 5 t\ . . . .
except that the direction V(x,t) = (x) is no longer constant. Information still propagates in the

direction of v, i.e. along the characteristic curves 7,,(s) everywhere tangent to v, defined by:
Vao(8) = V0 Yuo(5), Ty (0) = (20,0).
More familiarly: the coordinates of 7,,(s) = (x(s),t(s)) are determined by the ODE system IVP?

2(s) = v, = t, z(0) = m,
t'(s) = v = =z t(0) = 0.

The solution to this system is z(s) = xo cosh(s), t(s) = zgsinh(s), so that
Vo (8) = (g cosh(s), zgsinh(s)).

t t

The schematic propagation of initial data in this IVP.

According to the characteristics, our initial data can only propagate to those (z,t) with |t| < x.

2Note that v, and v; here denote the 2 and t components of the vector ¥, not partial derivatives. Subscripts on
the un-bolded form of a vector variable will always refer to components in this way.



We now proceed as in the previous example, but using this 7,,. Now f(s) := (u o 7,,)(s) satisfies

F(s) =71 (s) - (Vo 4 (s)
= (V- ﬁu) O Yo ()
= (x —u) oy (s)
= zgcosh(s) — f(s),
so that
f'(s) + f(s) = @o cosh(s),

Again using the integrating factor e®, one has

2s 1
¢ 2+ ds = %(es +2se %) + Ce™?,

f(s) = zoe™ - /es cosh(s)ds = zge™* - /

and setting

% +C = £(0) = u (75 (0) = u(xo,0) = $(x0)

yields C' = ¢(z9) — 2, and hence

)

£(s) = % [e* + (25 — 1)e™] + dlo)e .

To solve for u(z,t), we must again find the characteristic which passes through it:
(2,1) = Yuo (5) = (2 cosh(s), zgsinh(s)) = s =tanh '(t/x), zo= Va2 — (2.

We now simply plug these expressions® for s and x( into our solution for f(s):

Va?—t? \/:c—l—t 1 [x —1t
2 tanh —1
x—t+( tanh™ (¢t/x) — 1) P

4
_ﬂ|x+t|+<ln(z—i> —1) |x—t|} + I‘%(m)

u(zx,t) =

s (Vir—E)

T+t

T+t

_ 1[2t+(x—t)1n(x+t>} + x_tgb(\/W)

4 r—t T+t

on the region {(z,t) : 0 < |t| < z}.
[l

One can see these examples’ evolutions of initial data by playing the ¢ slider in this Desmos demo.
In these examples, we see the general procedure emerge (for an IVP specifying u(z,0)):
1. Find a formula for 7,,(s) = (x(s),t(s)) by solving the ODE system

r'(s) = v, z(0) = o,
t'(s) = w, t(0) = 0.

3Note that tanhfl(t/x) =1In ( L‘H)

10


https://www.desmos.com/calculator/s2y7zjqrkw

2. Find the ODE characterizing f(s) := (u o ¥,,)(s) and solve for f(s) in terms of s and .
3. Find the combination of zy and s such that 7,,(s) = (z,t) and plug into f(s) to find u(x,t).

In general, step 1 may need to be minorly adapted to the initial data (e.g. if u(x,1) = ¢(z) is given).

Note: the text frames this method as a change of coordinates under which the PDE becomes an
ODE; this is simply a matter of perspective. In our notation, the new coordinates would be (zy, s),
and the transformation between them and the original coordinates (x,t) is simply

(1‘0,8) = (.T,t) = ’?zo(s)'
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Day 3: Heat Equation Intro (Lessons 2,4)
How can we model the dynamics of temperature?

In ODE’s, we (likely) saw Newton’s law of cooling: the rate of change of an object’s temperature is
proportional to its temperature difference with the environment. If the temperature is y(t),

y'(t) = —k(y(t) = T). (5)
About as well as one can do with a single independent variable (time), but quite crude.
If a region’s temperature u(X,t) varies spatially and temporally, what governs its evolution?

Requires Fourier’s law: vectorial heat flux § (—S28Y) ) is proportional to temperature gradient,
q q (time)-(area) prop

q= —kVu.
Physically, the rate that heat energy crosses an infinitesimal surface area element dA is

q-dA = —kVu-dA.

The quantity k ( (temperatu(ferfffiﬁe). (1ength)) is the medium’s thermal conductivity. Equivalently,

(heat flux in direction d) = A - § = —kf - Vu,

proportional to the temperature’s rate of change in the n direction. Since this rate of change is

_ = ~ R U’()EO + hﬁa t) B U(io, t)
n-Vu| = o [u(Xy + si, t)] = ’1115)1% -

)
io s=0

this intuitively jives with Newton’s law: heat flow along i arises due to a temperature difference.

What does Fourier’s Law imply about temperature dynamics?

Consider the total heat energy in a bounded 3D region U C R? (with smooth boundary oU):

H(t):/Ucpu(i', t)dV,

(energy)

(temperamre)'(mass)) and p its mass density. On one hand,

with ¢ the medium’s specific heat (

dH d
Ty {/U cpu(X, t)dV} = /Ucput()_c’, t)dv.
But since energy is conserved: if energy isn’t generated in U, the change must flow across OU”,

d_H:_/ q-dA = Wu-dl:/(mu)dv (6)
dt oU ouU U

4A mathematician worries whether interchanging the derivative and integral is permissible. This is generally a
nontrivial analysis question, but it goes through here since U is bounded and we take u to be smooth.

Recall the divergence theorem:
/ ﬁd?;:/(ﬁ-]?)dv
U U

12
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Hence we’ve found that
/ [cpuy — kAu]dV = 0. (7)
U

Applies to any bounded region U, no matter how large, small, or (smoothly) misshapen.
Since the integral (7) is 0 for all such U, the integrand (cpu; — kAu) must be 0°:
cpuy — kAu = 0.

Rearranging and setting a? := £ (thermal diffusivity), we’ve arrived at the heat equation:
cp e A

u = a?Au (8)

This PDE governs the dynamics of temperature in a uniform medium.

Note that this PDE is linear and homogeneous, L[u] = 0, with L = (9, — a®?A). Some variations:

e Heat sources: if heat is generated in U at density rate f(X,t) (%), then (6) becomes

dH
== = [ (kAu+ f(R,1)dV,
iy

and (8) is now

uy = o*Au + F(X, 1) (9)

with F(X,t) = Cip f(X,t). This reads L[u] = F: heat sources add an inhomogeneous term.

o [Iick’s Law of diffusion: the flux J of diffusing particles is proportional to the density gradient,
J= —Dﬁp,

with D the diffusion coefficient. A relabelling of variables in the above argument yields

pt = DAp

(using conservation of particle number), so the heat equation also describes diffusion.

6This follows so long as the integrand is (reasonably) assumed continuous.

13



e Convection: if the medium is flowing with constant velocity v, heat energy (or particle num-
ber) in U can also change due to the medium’s flow across the boundary,

(rate energy is carried out of U) = /

cpuv - dA = / cpV - (u¥)dV = /(cp\7 - Vu)dV
ouU U U

Hence (6) gains this as an additional term,

dH =
— = [ (kAu — cpV - Vu)dV,
a /),

and ultimately (8) becomes the convection-diffusion equation

w4+ V- Vu = o?Au (10)

From Day 2: if a — 0, this simply translates initial data at velocity v, as one would expect.

e In a nonuniform medium, k may vary spatially. In a nonlinear medium, k£ may depend on the
temperature u. You will derive the appropriate modifications to (8) in HW1.

e 1D: In a thin rod, u is nearly constant on cross-sections, so u(X,t) — u(x,t) and (8) becomes
U = Uy, (11)
the 1D heat equation. Observe that this says

u(z + h,t) — 2u(x,t) + u(x — h,t)

Up X Ugy = liM

h—0 h?
: 2 w(x + h,t) +u(z —h,t)
Up X }lgr(l)—ﬁ u(z,t) — 5

In brackets is the difference between u(z,t) and its mean value at nearby points’. Compare (5).

Graphically, (11) says that temperature changes more quickly in response to strong concavity.

u(z,t)

ug(x,t)

T

"In fact, denoting by @ the average of u on a sphere of radius r centered at ¥, one has in any dimension n that

Au(X)

2 3
oy " + O(r).

a=u(X)+

In this sense, A measures a function’s deviation from its mean, and the heat equation reflects Newton’s law of cooling.

14



A new consideration arises in 1D: does the rod lose heat to its 3D environment? If not, we
say it is laterally insulated, and (11) applies. If so, Newton’s law suggests a simple correction,

2
Uy = O Uyy — U — uyp),
where ug is the environment temperature.

In practice, one may need several of the above variations’ correction terms simultaneously.

15



Day 4: IBVP’s and Separation of Variables (Lessons 2,3,5)

How do we pose temperature evolution problems?

Given our PDE, say (8),what more must we specify to uniquely determine a solution u(X,t)?
Intuitively: given a cubic room, say 0 < x,y, z < 3, what must we know to predict its temperature?
Initial data u(X,0) is necessary, but insufficient. Are there windows? Is it cold or warm outside?
Namely, we need conditions at the boundary of our room. We can’t hope to predict u(X, t) otherwise.

In addition to the PDE (8) and initial condition u(X,0), then, we must constrain the six functions

u(z,y,0,t) u(z, 0, z,t) u(0,y, z,t)
ulz, y, 3.1) for 0 < z,y < 3, u(z, 3. 2 1) for 0 <z, 2z <3, (3,9, 2 1) for 0 <y, z < 3.
Y

(=]

One can imagine placing sensors on a boundary (say, the front surface) and applying heating
elements as needed to enforce a desired boundary temperature. This amounts to directly specifying
u(z,y,3,t) = g(v,y,t).

Another surface (say, the top) may be thickly covered in insulating material, so virtually no heat
transfers across it. This requires g - i = 0, with fi the boundary’s unit normal. By Fourier’s law,

0
a—Z(x,S,z,t) = uy(z,3,2,t) = 0.

Alternatively, heating elements may be set up to transfer heat at a prescribed rate, specifying

0
8—Z(x,3,z,t) =uy(z,3,2,t) = g(z, 3, 2, t).

16



Finally, a third surface (say, the rightmost) may be a glass window exposed to an environment
temperature ug(t). Newton’s law suggests that ¢ - should be proportional to the difference u — uq:

0
k%(?)?ya Z7t) =—h [u(37y727t) - uO(t)] )

with A the boundary’s heat-exchange coefficient.

In summary, the most common and natural boundary conditions are:

e u = g (specified boundary temperature).

du

.6n

= g (heat flow across boundary specified).
° % + Au = g (surrounding environment temperature is specified).

Example: Consider a laterally insulated copper rod situated at 0 < z < 200 (measured in cm)
with an initial temperature of 0°C. Suppose the end at x = 0 is perfectly insulated, while the end
at x = 200 is immersed in water at 20°C. The rod’s temperature u(x,t) satisfies

2

Uy = Q" Ugy,
u(0,8) = 0,
uz(200,t) = —2[u(200,t) —20], 0<t<oo
u(z,0) = 0, 0 <z <200

cal
cm-s-C*

For copper, o ~ 1.16% and k ~ 0.93 h (%) generally must be found empirically.

]

This is a typical initial boundary value problem (IBVP) containing all the information needed to
obtain a unique solution in parabolic-type problems.

Similarly to DE’s, we will call a boundary condition linear if it has the form
ou
au+ b — =
B, =9
(with «, [ constants) and homogeneous if ¢ = 0. Linear BC’s also enjoy a superposition principle.

As seen in the above discussion, linear boundary conditions are apparently quite natural.

How can we construct solutions to IBVP’s?
To solve these, we now develop one of the most powerful techniques for understanding linear PDE’s.

Example: We model a laterally insulated rod of length 1 with temperature fixed to 0 at the ends.

w o= U,
u(0,t) = 0,
u(l,t) = 0, 0<t<oo, (12)
u(z,0) = sin(rz), 0<z <1

17



An interesting observation about this initial condition:
Uge(2,0) = —m?sin(mx) = —72u(x,0),
so that, at least at t = 0, u seems to satisfy the simple ODE in ¢,
uy = —(ra)*u. (13)
Not too informative at a single ¢. If it (miraculously) holds at all ¢, one has the simple solution

u(z,t) = u(z,0)e” " = sin(rz)e~ ",

Remarkably: this function u(z,t) keeps ., = —7>u consistent, so
u(z,t) = sin(rz)e” )
is a solution to (12) for which (13) does always hold.
The essential feature that preserved u,, = —m2u was that the solution u(z,t) = sin(mz)e” (™)
separated into a product of a function of x and a function of ¢.
[
In general, the rod above may have an arbitrary initial temperature profile u(x,0) = ¢(x):
U= 0P,
u(0,t) = 0,
u(l,t) = 0, 0<t< o0, (14)
u(z,0) = ¢(x), 0<z<1

We eventually expect u(z,t) — 0. How does the transition from ¢(x) look? How long does it take?
This requires knowing u(x,t). Generally, solutions may be quite complicated.

The example suggests we might reduce to ODE’s by seeking solutions which separate,
u(z,t) = X(x)T(t).

This is the separation of variables ansatz. Plugging this ansatz into the PDE gives

X(2)T'(t) = uy = 0Py = &> X" (2)T(t).
The crucial step to fully “separate” the variables in the PDE is dividing through by X (z)T(t),

T(t) _ X'(x)

a?T(t) X(x)

This equation states that the LHS and RHS are the same function of (z,¢). From the LHS, this
function is independent of . From the RHS, it is independent of t. Hence it must be constant! Say,

T X
a?T(t) X(z)"
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A priori, k € R may be any number. This yields two ODE’s for X (z) and T'(¢),

X"—kX =0,
T — ka®T = 0.

Solving, these ODE’s indicate that any function of the forms

u(z,t) = [A cosh(ﬂx) - Bsinh(ﬂx)] eko’t, k>0
u(z,t) = [Acos(v/—kz) + Bsin(v—kz)] kot k<0

solves our PDE. How many also satisfy the boundary conditions u(0,t) = u(1,t) = 07
These boundary conditions require X (0) = X (1) = 0. Recall from HWO that the BVP

y' =Ny =0, y0)=y(1)=0
only admits y(z) = 0. To find a nontrivial X (z), then, we must take k < 0%, say k — —\%

X"+ XX =0, X(0)=X(1) =0,
T + (\a)*T = 0. (15)

For which A does the BVP for X (x) admit nontrivial solutions? As seen above, one must have
X(z) = Acos(Az) + Bsin(Az),
and imposing 0 = X (0) = A and 0 = X (1) = Bsin(\) requires sin(A) = 0, or A = nx for n € Z.

7(7Tn04)2t‘

Hence for each A = nm, n € Z,, we have X,,(z) = Bsin(nnz). Correspondingly, T,,(t) = e

For each n, then, we have a solution w,(x,t) to the PDE respecting the boundary conditions,
—(n7roz)2t.

up(z,t) = By sin(nmx)e

These are all of the separable solutions to the PDE matching the boundary conditions.

8 Alternatively, we might take k& < 0 on physical grounds since we expect u(x,t) — 0 at large .
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Day 5: Separation of Variables and Fourier Series (Lessons 5,11)
How can we leverage separable BVP solutions to solve any IBVP?
We saw above that all separable solutions to the BVP in (14) were

Up(2,t) = By, sin(nrz)e 7).

This is just dandy if u(z,0) o sin(nmzx), but what does it have to do with an arbitrary ¢(z)?

Superposition now shines. Since both the PDE and BC’s in (14) are homogeneous, if u; and wug
each satisfy the BVP, so does any combination c¢yu; + cous. More broadly, any combination

Z Bhuy(z,t) = Z B, sin(nrz)e” )’ (16)
will solve the BVP?. In the full IBVP (14), this allows us to match any initial condition of the form
o(x) = Z B, sin(nmz) (17)

for any collection of constants B,,.

Example: The solution to the IBVP

w = Py,
u(0,t) = 0,
u(l,t) = 0, 0<t< o0,
u(z,0) = isin(rz)— 3sin(3rz) +sin(8rz), 0<z < 1.

is simply

1 3
u(z,t) =3 sin(ra)e ()" — 5 sin(37z)e” 3™’ 4 gin(8rx)e (37

\} <=\

9When verifying (16) satisfies the PDE u; = Uy, as an infinite sum, a mathematician worries whether inter-
changing the derivatives and sum is permissible. This is generally a nontrivial analysis question which we won’t pay

much heed. In our setting, it will work due to the fast convergence of the sum at any ¢ > 0, thanks to the e~ (nma)’t,
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Some snapshots of this evolution are shown above. See also this Desmos demo.

[]

It may seem that (17) is a rather restrictive assumption, but it was a remarkable insight of Fourier
that there is a sense in which it covers all (well-behaved) functions ¢(z) on [0, 1].

To begin to see this, let us suppose that our function ¢(x) could be expanded in this way,

= Z B, sin(nrx). (18)

How could we find the numbers B,,?

This can be done by leveraging the orthogonality of the function family {sin(nzz)} on (0,1):

1 ] % n=m>0
/ sin(nmx) sin(mrz)de = = (1 — 0,.0)0n.m 0 n=m=0
0 2
0 n#m

You will verify this in HW2. Multiplying (18) by sin(mnz) and integrating, we find!°
Z By, sin(nmz) sin(mm;)] dx

/01 o(z) sin(mrx)dx = /01
—ZB {/ smmra:)smmwa:da:] Z B5nm=— m

That is, if the expansion (18) exists, the coefficients B,, must be given by

B, = 2/0 ¢(x) sin(nrz)dz (19)

The series .
= Z B, sin(nmz)
n=1

with coefficients (19) is the Fourier sine series for ¢(z) on 0 < x < 1.

Example: Consider the function ¢(x) = (1 — x). It is a straightforward procedure to compute

B, =2 1 ¢(x) sin(nrx)dr = 2 /1(1‘ — 2%) sin(nrx)dr
0 0

10 A mathematician worries whether interchanging the integral and the infinite sum is permissible. This is generally
a nontrivial analysis question which we won’t pay much heed. If this bothers you, it may bring you peace of mind to
know that Lebesgue’s dominated convergence theorem ensures that it works here so long as > -, | B,,| converges.
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_ % {—(m — o?) cos(nra) || + /0 (122 cos(nml:)d:x}
::O;P{O—Q@ﬁnmmﬂm+2lfwﬂmmﬂ4

4 1_ 4 cos(nm) —
- )’ [— cos(nmz)] ’0 = (mr)3[ (nm) —1]
4

= —s 1= (=D

nm)

—

—

That is, we’ve found

0 n even

B _{# n odd

This suggests: if ¢(z) = z(1 — z) can be expanded as in (18), then the expansion must be

B 8§: in((2n + 1)7x)
_w (2n +1)3

That is a big if, however: is it actually true that ¢(z) = S(x)?

See this Desmos demo. Shown are ¢(x), the Nth partial sum Sy(z), and 50 - (¢(x) — Sy(z)).

O
This example is suggestive, but when do we know that ¢(z) = S(x)?
Before establishing this, we consider a slightly different IBVP:
Example: We model a laterally insulated rod of length 1, perfectly insulated at the ends.
U= Py,
u:(0,t) = 0,
ug(1,t) = 0, 0<t<oo, (20)
w(z,0) = o¢(z), 0<z<1
You will show in HW2 that all separable solutions to the BVP are
un(z,t) = A, Cos(nwx)e_(”m)Qt, n=0,1,2,...
O

It is also an interesting question, then, whether an arbitrary function ¢(x) on [0, 1] may be written

() = AO + ZA cos(nmx). (21)

As before, one may use the orthogonality of the function family {cos(nmx)},

L . T n=m#0
/ cos(nmx) cos(mmx)dr = 5(1 +000)0nm =41 n=m=0
0 0 n#m,
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to deduce that, if an expansion (21) exists, the coefficients must be given by

A, = 2/1 o(z) cos(nmz)dz
0

The series
o

C(x) = % + Z A, cos(nmz)
n=1

with coefficients (22) is called the Fourier cosine series for ¢(z) on 0 < z < 1.

23

(22)



Day 6: Fourier Series (Lesson 11)
Do Fourier Series converge to the original function?
Both S(x) and C(z) arise as special cases of the more general Fourier series of a periodic function.

Given a periodic function f(x) with period 2L, one seeks to represent it as a combination of sines
and cosines with compatible periods, i.e. drawn from the set

{sin(nmx/L), cos(nmx/L)}.

Such a representation would generally have the form

—504—%[@”005( )—l—b sin <nza:)}

n=1

Similarly to before, one can straightforwardly show the orthogonality relations (n,m > 0)

/L sin (nz:c) sin <m£m:> dr = L(1 — 8,,0)0n.m,
~L

L
/_L cos (?) cos <m;r ) dr = L(1 + 6,.,0)0n.m,
L
/ sin <@> cos <w> dx = 0,
_L L L
and these imply that, if an expansion as above exists, then the coefficients a,, and b,, must be
1 [E
= Z/_Lf(:lr) Cos (?) dx
1 L
=7 /_L f(z)sin (?) dx (23)

The series

For= 5 0 5 o () b ()] g

n=1

with these a,, and b, is called the Fourier series for f(x).

Example: Consider the periodic function given by f(x) = x on [—L, L). This is the sawtooth wave:
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We compute

Ay =

L
/ Z COos <@> dr =20
I L

Sk

(how was this done immediately?), and

L nm L
2L

— (1 n+1
—(=1)

Hence one has

2L | . (7?:5) 1 . (272 n 1 . [(3rx
=—|sin{—)—=sin| — —sin | — | —---
s L 2 L 3 L
We may plot the partial sums Fy(z) (see this Desmos plot with L = 1):
Fl()(I)

LA%

—3L

Such plots are suggestive, but is it true that F\(z) = f(x)? A few values:

F(0) = % > (=" sin(0) =0 = f(0) ™

n
n=1
2L 1 1 3 2L o= (—1)F
F(L/2) == {sm (g) ~ 5 sin(m) + g sin (g) _ } -2y 2(k+>1
k=0
2L 2L L
= Ztan ()= =T =S = f(L/2)

F(L) = % > (_17271“ sin(nm) =0# —L = f(L) M
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This last result is perhaps not so surprising, as x = L is a point of discontinuity for f(z).

[]

Note: however many terms one includes in F'(x) for ¢(x) = z, the partial sums Fy(x) always
sharply oscillate and “overshoot” ¢(x) near x — L. This is known as the Gibbs phenomenon.

The Gibbs phenomenon is related to the failure of the Fourier series to converge uniformly.

The most intuitively natural notion of convergence is pointwise convergence, meaning

lim Fy(zo) = f(xo) = lim |Fn(zo) — f(z0)] =0

N—oo N—o0

at each xy. Meanwhile, uniform convergence means

lim max (|Fy(z) — f(z)|) = 0.

N—ooo @

Both precisely when F(z) = f(z) and the strength of the convergence has been widely studied.
There are many results establishing different notions of convergence under varying conditions.
The following result establishes pointwise convergence under suitable conditions:

Theorem (Fourier Convergence): If a periodic, (locally) integrable function f is differentiable at a
point xg, then

F(xo) = f(x0)-

Moreover, if f has a jump discontinuity at xy with left- and right-hand limits

lim f(z) =1, 1im+ flx)=r

=T T
and the left- and right- hand derivatives of f exist at x(, then

[+
2

F(xo) =

In the example, each discontinuity (zo = kL) hasl = L, r = —L, and F(z) = (I +r)/2 = 0.
On the convergence rate of Fourier series, one has:

Theorem: If a periodic function f(x) is piecewise smooth with jump discontinuities first appearing
in the kth derivative, then
C

|a’n|7 |bn| < nk+1

The smoother f(x) is, then, the faster its Fourier series converges.
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In the example, f(x) itself was piecewise discontinuous (k = 0), and indeed b,, ~ 1/n.
There, F(z) reduced to S(z) because f(x) was odd. F(x) similarly reduces to C(x) if f(x) is even.

Any ¢(x) on [0,1] in (14), (20) can extend to an odd f,(z) or even f.(z), periodic with period 2.

fe(x)

C(z), S(x) are built from ¢(x). For the even f.(z): F.(x) = C(z). For the odd f,(x): F,(x) = S(x).
In this way, questions about S(z) and C'(z) on [0, 1] reduce to questions about F'(x) on [—1,1].

In particular, the theorems apply to the series S(z) and C(x) built to solve IBVP’s.

Hence, we can solve (14) and (20) with effectively any reasonable ¢(x) via separation of variables.

Example: We can construct the solution to the IBVP
2

Uy = QO Ugy,
u(0,t) = 0,
u(l,t) = 0, 0<t< o0,
uw(z,0) = oz, 0<z<1,

by expanding ¢(x) = x in its Fourier sine series on [0, 1], as the separable solutions to the BVP are
up(z,t) = B, sin(nrz)e” "7,

From the last example,

o(x) = %Z (=)™ sin (nmz),

n

so the solution to the IBVP is simply

2 o= (1) 2
) =2 —(nma)?t
u(z,t) - E — (nmx)e

n=1

To visualize, hit play on the s slider in this Desmos demo.
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Day 7: Sturm-Liouville Theory (Lesson 7)
How can we solve more general homogeneous IBVP’s?
Fourier series are powerful and arise in the canonical IBVP’s, but they are not universal.

Example Consider a laterally insulated rod with temperature fixed to 0 on one end and submerged
in water at temperature 0 on the other. The appropriate IBVP is

2

Uy = O Ugy,
u(0,1) = 0,
ur(1,t) + hu(l,t) = 0, 0<t<oo,
u(z,0) = ¢(z), 0<az<l1,

Since we have not modified our PDE, separation of variables plays out largely similar to before:

_ 1Y 2y ) X"x) o
u(z,t) = X(@)T(t) = X@T'(t) =a"X"(2)T(t) = 2T - X(@) -7

giving the ODE T” + (a\)*T = 0 and the BVP
X"+ XX =0, X(0)=0, X'(1)+hX(1)=0.
Hence X (z) = Acos(Az) + Bsin(Az), and the BC’s impose
0=X(0)=A, 0=X'(1)+hX(1) = B(Acos(\) + hsin(N)),
so that nontrivial solutions to the BVP only arise for those A\ values satisfying

Acos(A) + hsin(A) =0 = tan(\) = —\/h.

| - tan(A) [ |
i s i 27 i 37 i 4
+ T + T + T T }
‘ ‘ Lo L ! A
| A1 — Lo o
3 AR R !
| | A g
| | | I M
There is an infinite sequence A, of solutions, A\ < Ay < A3 < --- with A, — 00, and associated

Xp(x) = sin(A\,x).

While we cannot write down a formula for \,, we have an infinite family of separable solutions
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Un(l'y t) = On Sin()\nl‘)e—(/\na)%

like before, out of which the IBVP solution could be built if one could expand
o(z) = Z C, sin(\,z).
n=1

X, (x) = sin(\,2)

sin(nmx) cos(nmzr)

Sines are involved, but this is distinctly not the Fourier sine series, nor any kind of Fourier series.

Even so, the family {sin(\,z)},>¢ does enjoy a (slightly less trivial) orthogonality property:

! 1 sin(2\,)
in(A,z) sin(Apz)de = ( 5 — —5— | nms
/0 sin(\,x) sin( A, z)dz <2 e ) ,

which can be used deduce that the above coefficients C,, would have to be.

. 1, /1¢<>'(A )d
n — . I ) SIN(A,T)ax.
2\, — sin(2\,) Jo
One can see (approximate) convergence to ¢(x) = x and evolution of u(z,t) in this Desmos demo.
While this problem was not reducible to Fourier series, a very similar pattern emerged.

Did we get lucky? How broad are these patterns?
]

When one solves a spatially 1D heat-type (see HW3) PDE + BC’s combo (each linear and homo-
geneous) on a < x < b via separation of variables, one obtains a BVP for X (x) of the form

(p(x)y") — q(x)y + Aw(x)y
ay(a) + Ay (a)
asy(b) + 52?/(5)

0
0
0

(25)
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This is a Sturm-Liouville BVP: regular if p(z), w(z) > 0ona < x < band p, p/, ¢, w are continuous.

Defining the linear differential operator L by

Ll = o

[—(p(z)y") + a(z)y],
we see that the Sturm-Liouville ODE is equivalent to

Lly] = My.

This is an eigenvalue problem, posed on the space of functions on [a, b] satisfying the BC’s.

Nontrivial solutions y(x) are called eigenfunctions, and the associated A is called an eigenvalue.

Example: The prototypical Sturm-Liouville problems are those we’ve seen in our IBVP’s leading
to Fourier series:

X"+AX=0, X(0)=0, X(1)=0,
Y'4+AY=0, Y'(0)=0, Y'(1)=0.

These had p(z) = w(z) = 1 and ¢(z) = 0. They admit an infinite sequence of eigenvalues

)\1<)\2<)\3<"', lim A\, = oo

n—oo

(given by (n7)?) with eigenfunctions
X, (x) = sin(nmx), Y, (z) = cos(nmz).

These families of eigenfunctions each enjoyed orthogonality relations,

1
/ X d;p o< 6nma / Yn(:t)Ym(x)dx X 5n,m7
0

and any “nice” (see the theorem on Day 6) function gb(x) on (0, 1) could be expanded
Z B Xo( Z A Yo
O
Outside of explicit formulas, all of these properties generalize to any regular Sturm-Liouville BVP.
On the space of real-valued functions on [a, b] satisfying the BC’s in (25), define the inner product

(.9 /f

We say that f and g are orthogonal (with respect to the weight function w(z)) if (f, g) = 0.

We demonstrate an essential property of the differential operator L on this space:

{f; Llgl) — (LIS, 9) =/ f(@) [=(p(2)g'(2)) + q(z)g(x)] dx
- / 9(x) [=(p(=) [ (x)) + q(x) f ()] dz

a
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One should check that the last step follows from f and g satisfying the BC’s in (25). We’ve found

{f; Llg)) = (LIf], 9),

and L is therefore said to be self-adjoint. With this, we may readily conclude

Theorem: Eigenfunctions with distinct eigenvalues are orthogonal.

Proof. 1f eigenfunctions ¢y, ¢5 of (25) have eigenvalues A\; # Ay, then

0 = (@1, L[pa]) — (L[p1], @2) = (¢1, Aap2) — (M1, d2) = (A2 — A1) {1, 92).
Since Ay — A1 # 0, we must have (@1, ¢o) = 0.

In the computation leading to self-adjointness above, we found

_4d
- dr

w(z)(fLlg] = LIf]g) () (f'(x)g(z) = f(x)d (x))]

This can also be leveraged to deduce that an eigenvalue has only one independent eigenfunction:

Theorem FEigenfunctions with the same eigenvalue are multiples of each other.

Proof. 1f ¢; and ¢9 have the same eigenvalue \, then

d

e [p(2) (¢} (2)Pa(r) — d1(x)Ph(x))] = w(w)(d1L[pa] — L)) = w(z)(Adp1o — Ap1¢ha) =0

That is, the quantity
p() [¢hd2 — d19%)

is constant. The BC’s impose that this is zero at a and b, so it is zero everywhere.
Recall from ODE’s that W (x) := ¢} @2 — ¢1¢), is the Wronskian of ¢; and ¢9, and W (z) = 0 implies

that ¢ is a constant multiple of ¢s.
O

The analogue to Fourier series is beginning to emerge. It is completed by the following result, whose
proof is (well) beyond this course.
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Theorem: A regular Sturm-Liouville BVP (25) admits an infinite sequence of eigenvalues

)\1<)\2</\3<"', lim A\, = o0

n—oo

with associated eigenfunctions ¢,. Any continuously differentiable ¢(z) on [a,b] may be expanded

¢($) = Z Cn¢n($),

converging pointwise on a < z < b, where C,, is given (from the orthogonality relation) by

o~ 1600 _ [ o@on(@ulz)da

(Dn; Pn) f; @2 (z)w(z)dr

If ¢(x) also satisfies the BC’s, the series is also guaranteed to converge at x = a, b.

Later, we’ll see irregular SL BVP’s, wherein these properties are not automatically guaranteed.
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Day 8: Inhomogoneous IBVP’s (Lessons 6)
How can we handle inhomogeneous problems?

Our strategies so far have hinged on linear combinations of BVP solutions remaining solutions, and
this required the BVP to be homogeneous. Inhomogeneous problems require further ingenuity.

First: to what extent can inhomogeneous problems be reduced to homogeneous ones?

Would like to draw on the superposition principle like in ODE’s, where one often uses the schematic
(general solution) = (homogeneous solution) + (particular solution). (26)

Somewhat complicated by having two sources of inhomogeneity: both the PDE and the BC’s.

Example: Consider a laterally insulated rod whose two ends are kept at temperatures k;, ko:

2

Uz = O Ugy,
u(O,t) = k’l,
u(l,t) = ke, 0<t< o0,
u(z,0) = ¢x), 0<z<1.

Separable solutions exist, but are not be useful because linear combinations do not respect the BC’s.
We could solve this with homogeneous BC’s u(0,t) = u(L,t) = 0, so we seek a decomposition (26).
How can we construct a particular solution? If it exists, the steady-state is an ideal candidate.

Recall from HW2: the steady-state is a BVP solution u(x,t) = U(x). Here, U(x) solves the BVP
U'(x) =0, U(0) =k, UQ) =k,
so the graph of U(x) must be the line connecting (0, k1) and (1, ks) in the zu plane,

U(z) = k(1 —z) + ko, (27)

Defining w(z,t) := u(x,t) — U(z), we may easily compute

Wy = U, Wgg = Uggy — U" = U, U)(O,t) = 'LU(l,t) = Oa U)(.’ﬂ, 0) = ¢(£L’) - U(l’)7
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so w solves the IBVP

v, = Uy,
v(0,t) = 0,
v(1,t) = 0, 0<t< oo,

v(z,0) = ox)—U(z), 0<z<1.

As this is homogeneous, we may readily solve by expanding ¢(z) — U(z) in a Fourier sine series.
Once v(z,t) is known, we simply add back the steady-state (27), u(z,t) = v(z,t) + U(z).

Snapshots of a typical solution are shown below. See also this Desmos demo.

u

O
The above only works if sources and BC’s have no explicit time dependence, so a steady-state exists.

Generally, we cannot entirely eliminate inhomogeneity. Consider the IBVP with general linear BC’s:

2

Uy = O Ugy,

OéfU(O,t) + /Bluz(07t) - gl(t)7
a2u(1vt) + ﬁ?ux(]wt) = gQ(t)y 0<t< o0,
u(z,0) = ¢(zr), 0<z<Ll.

Given the time-dependent BC'’s, a fully steady-state solution will not exist.

We may still take inspiration from (27), however, and subtract off an analogous component,
Ulx,t) = At)(1 — x) + B(t)x,

with A(t) and B(t) chosen so that U(z,t) solves the BC’s. This imposes the constraints

g1(t) = a A(t) + Bi(B(t) — A(t)),
g2(t) = aeB(t) + B2 B(t) — A(1)),

which may be straightforwardly solved for A(t), B(t) given (almost) any values of «a;, ;.
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Knowing A(t) and B(t), we define as before v(z,t) := u(x,t) — U(x,t), which now solves the IBVP

vy = P, — Uy,
alv(oa t) + ﬂlvm(oa t) = 0,
agv(1,t) + Bavg(1,t) = 0, 0<t< o0,
v(z,0) = ¢(zr)—U(z,0), 0<zxz<1.

We have managed to homogenize the BC's, but destroyed the homogeneity of the PDE.

Example: The natural case a; = as = 1 and ; = S3 = 0 in the above simply yields

At) = qu(t),  B(t) = (),

and the IBVP for v becomes

vy = 0Py — g (t)(1 —x) — gh(t)x,
U(O,t) 07
(1,1) 0, 0<t< o0,

You will treat the case a; = as =0, f; = o =1 in HW4.

The moral: we generally cannot arrange for homogeneity of both the PDE and BC’s, but we can
always at least ensure one is homogeneous. We will prefer homogeneous BC’s.
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Day 9: Inhomogeneous IBVP’s: Eigenfunction Expansion (Lesson 9)
How can we construct solutions to inhomogeneous IBVP’s?

Consider the broad class of heat-type problems with homogeneous BC’s:

Uy = o [(P(2)ur)s — q(@)u] + f(z,t),

alu( )+ Blux( ) = 07

agu(l,t) + fou,(1,t) = 0, 0<t<oo, (28)
u(z,0) = o(z), 0<z<1.

We develop the eigenfunction expansion method, similar to variation of parameters in ODE’s.

As in ODE’s, the essential first step is to consider the fully homogeneous case, f — 0.
In that case, HW3 shows: separating u(z,t) = X (2)T'(t) yields the standard SL BVP (25) for X (z).

The homogeneous BVP then admits separable solutions u,(x,t) = ¢, (z)e™*!, and more generally
- Z Cngbn(x)e_)\nt' (29)

Returning to the full problem (28), SL theory ensures we may expand f(z,t) in the ¢, at each t:
=Y falt)én(2)
The eigenfunction expansion method takes as an ansatz the form (29), but promoting C,, — C,(¢),
=Y Cult)pn(z)e ™
Substituting this into the PDE (and using that the ¢,, are SL BVP eigenfunctions) yields

2 G0 =3 Lo
= > (CLt)e™ = fu(t)) du(z) =

= O™ = fu(t) =0,

by orthogonality of {¢,}. That is, we've found

— / fu(t)ertdt

Schematically, our ansatz reduces the PDE to an infinitum of ODE’s, each characterizing the
response to the source component f,(t)¢,(x). Finally, we impose the IC to fully determine C,,(¢):

o(x) = u(z,0) ZC’
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The initial values C},(0), then, are precisely the coefficients in the eigenfunction expansion of ¢(z),

C(0) = S0 0n) _ [y #@)éu(xyw(w)dr

(Pn; D) fab o2 (x)w(x)dz

Combining our results, the coefficients C),(¢) are fully given by

Cy(t) = C,(0) —|—/0 fuls)eMds

Example: To illustrate, consider the simple IBVP (in which one could shift away the steady-state)

Uy = *uy, +sin(37x),
u(0,t) = 0,
u(l,t) = 0, 0<t< o0,
u(z,0) = sin(mx), 0<z<l1.

The BVP eigenfunctions are ¢, (z) = sin(nmz) for n > 0, and in the present notation, )\, = (n7a)?.

Hence f(x,t) = sin(3mx) simply has f,(t) = 6,3 and ¢(z) = sin(nwz) gives C,,(0) = 6,1, so that

et — 1

An

t t
Cult) = o)+ [ ()65 = b0 +0s [ s = Gy b
0 0

Namely, we have C,,(t) = 0 for all n except

ettt — 1
Cl(t) - 1, Cg(t) == ,
Az
and hence our solution u(zx,t) is
ettt — 1
u(z,t) = ¢y (z)e ™M + 5y p3(x)e st
3
1
= 612+ - y()(1— )
3
1
u(z,t) = o~ (ma)*t sin(mz) + (3ra)? [1 — e—(37ro<)2t} sin(37z)
T

Some snapshots of this evolution with 3mra = 1 are shown below. See also Desmos.

u

u(z,0)

=\
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To more completely illustrate, let us work a more involved example.

Example: Beginning at ¢ = 0, dye is injected at 2 = L/2 (cm) at a rate of r £ for 1 s into a very
thin (impermeable) tube of initially pure water that flows to the right at rate v <*. Filters at = 0
and z = L remove all dye from the water at these positions. What is the linear concentration p(z, t)

(&) of the dye?

Recalling Day 3 and denoting by D the diffusion coefficient (%), the appropriate IBVP is

pr = Dpyy—vp, +rH(1—t)0(x — L/2),
p(0,t) = 0,
p(L,t) = 0, 0<t< oo,
p(x,0) = 0, 0<z<L,

where H (t) is the Heaviside step function and §(z) is the Dirac delta “function”.

(30)

We find separable homogeneous solutions. Plugging p(x,t) = X (2)T'(t) into the sourceless PDE:

T'(t)X(x) = pt = Dpaa — vpr = (DX"(z) — v X'(2))T(1),

so that
T'(t) _ DX"(x) —vX'(x) _
T(t) X(z) ’

so T" = —\T and X satisfies the BVP

DX" —vX' +AX =0,  X(0)=X(L)=0.
Multiplying by e~"*/P we see this is a SL BVP with p(z) = Dw(x) = De™v%/P:
(De™*PX"Y 4 Xe™/PX =0,  X(0) = X(L) = 0.

O

557, it is a straightforward ODE exercise to see that solutions are

Defining p:= 1/ — (
X (z) = Be"™@P)gin(pux)

for pu such that sin(uL) = 0, i.e. p, = 5. That is, our eigenvalues are

2 D v D Lv\?
M= (124 (55) ) D= F0m? + 5= | o)+ (55
(“”+ 2D AT, Rl N AU Y5
with eigenfunctions
Pn(z) = "%/ (2D) sin(?).

Returning to the full problem (30), we presume a solution of the form

pla.t) = 3 Cult) )™,
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Our IC is trivial, but we must expand the source f(x,t) =rH(1 —t)d(x — L/2)
_ _ vz/(2D) (T
2 (Bonle) = 1O 3 1 (0sin()

= flx,t)e e/ 2P) an Slﬂ(mm>

Either observing this is the Fourier sine series of f(z,t)e™"*/?P) (on < x < L) or using the weighted
inner product (-, -), we see

9 (L
= Z/o f(x,t)e™v2/2D) sin(—mlix)dx
2r L —va/(2D) nmw
=—H(1—-t)[| 6x—LJ/2)e sm( >
L ; L

2r
= fre_% sin(%r)H(l —t),

dx

and hence the coefficients C,,(t) are

2r
/ fuls)eMids = = e vL/4D) sm / H(1 — s)e**ds

L
min(¢,1)
— Q_Ifefif; sin(%) / eMds
0
2 v i
L)T <nﬂ>€_£ (emin®DAn 1)

and the solution p(x,t) becomes

nm

p(.CL"t) _ Q%QMZIDL) Z Sln(?) Sin(ﬂﬂ'x) (emin(t,l)/\n - 1)6—)\nt

vt A L
0 mr
2r Ly (20 Sln <) . /nmx :
— —64D E 2 SlIl< ) (emm(O,l—t)An . e—)\nt)
n=1 n L

While a bit complicated, this can be evaluated however accurately one likes given D, L, v, and r.

Some relevant length scales are L and ; some relevant time scales are 1 s, %, g, and L

To understand this solution, adjust sliders in this Desmos demo (with L = 100). Some observations:

e The rate r only affects the overall amplitude of p.

e The dimensionless quantity Lv measures the ability of diffusion to overcome convection and

strongly impacts the convergence rate near v — L.

n(t—1)

™ for t > 1.

e The terms decay only like ~ ﬁ for 0 <t <1, but like ~

e The time scale % determines how quickly convergence improves for ¢ > 1.
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Day 10: Fourier Transform (Lessons 11-12)

How can we solve IBVP’s on infinite intervals?

We are now equipped, in principle, to solve any 1D heat-type IBVP on a finite interval 0 < z < L.
What if the spatial domain is unbounded, say —oco < z < 00?

To facilitate this, we conceptually extend the Fourier series (24) of a periodic function f(x),

[an CoS <nzx) + b, sin (nzxﬂ )

It is useful to reformat. Recalling Fuler’s identity

NE

Fle) =3 +

n=1

" = cos(x) + isin(z),

we may rewrite the nth term in the Fourier series

nTT nwT a - , b , .
n b ( ) _ n [ intx/L —inmxz?L n [ _intx/L _ _—inmx/L
acos(L>+ sin 7 5 e +e }—i——% e e ]

ap — iby eimrx/L an +iby, e—inmﬂ/L.
2 2

Recalling the definitions (23) of a,, and b,,, we see that

an — b nwT nmc
ROLLE e L . _ = —znTra:/L
5 / f(x) [COS( 7 ) zsm< dx / f(x dx,
an +iby,
a4 + ! / f(z cos ) +1 sm(mm / f(z ’"”/de

Denoting the complex numbers

¢ _L t —inmrx/L
o= = [ttt (31)

then, we’ve found

nwr nwx 1 A « .
a, COS + b, sin < ) - [ nemmc/L + _ne—mm/L] 7
( L > L NoYS f f

and we may now much more succinctly express the Fourier series (24)

1 = ;
= 2 Je (32)

F(z) = f(z) says: the information of a periodic function f(z) is equivalent to that of a sequence (f,).

40



The magnitudes | fn| measure the component of f(x) with frequency %*: this is the spectrum of f(z).
A periodic function has a discrete spectrum, or only a discrete collection of frequencies {%}.

In the limit L — oo, the stepsize 7 between frequencies approaches 0, suggesting that an arbitrary
function f(x) on R should be comprised of a continuum of frequencies.

Analogously to (31), then: if f(z) is integrable on R, we define the Fourier transform of f(z) as

~

FIfIE) = F(e) = J% / " f@)e sz

where ¢ represents a continuous frequency variable, being the frequency of the oscillatory e~%*.

For very large L, one might approximate (31) as (denoting &, = )

Fo— L - —inT ~ \/EA
fom o= [t [TRGE),
and hence (32) reads (for the usual “nice” f(x))
)~ YN B — L NS (Breeior) . T
fla) =P~ 0 30 Fle)e = = 5 (Flenes) -

In this final expression, the function F (£)ei® is evaluated at the points & = &,, spaced T apart.

/L

§3 2 &1 & & & &

This is precisely a Riemann sum for the integral of ﬁ(f)ei& over £ € R, suggesting (taking L — o0)

S Ry
m/_oo”@e ¢

This reasoning is indeed only a suggestion. However, it can be proven under suitable conditions:

?

f(x)

Theorem (Fourier Inversion Theorem): If f(z) is continuous and both f(z) and its transform F(¢)
are absolutely integrable over R, then

1 * 5 i€x
o) = <= / e

For this reason the inverse Fourier transform operator F~! is defined as

-~

FUR) == [ P
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The FIT, then, simply affirms F~'[F[f]] = f. The transforms F, F~! are linear operators.
For future reference, F and F~! continue to be useful tools in higher dimensional settings.

For integrable functions f(X), F(€) on R", these operators are defined according to

FINE) = s [ TR 5% FURIR) = s [ FEeré
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Day 11: Fourier Transforms in IVP’s (Lesson 12)

How can we solve IVP’s on infinite intervals?

We investigate structure and properties of Fourier transforms.
Example: We may readily compute the Fourier transform of f (x) =e"

—ar2—i
e~ 1£wdfﬂ—

F(§) = Fle () = NGT: /_Oo m/

1 2 [ 1 e [ 2 1 ¢2
- e da e Fdz = e da,

Vo o0 T Ver oo V2a

where we have changed variables!'! to z = z + % and used the standard result

o0
a2 m
/ e “mdx:\/j.
o a

We may verify the FIT’s conclusion for this example:

FHURE) = =7 e

Invoking the same computation as above with a — b = ﬁ (and a complex conjugation) gives

1 o2
F e ) (2) = —e 5 = V2ae™ ™,

V2b

so that we indeed have

f(x) F(¢)

X

How does this help us to solve IBVP’s specified on —oco < z < 00?
This is provided by how the Fourier transform interacts with derivatives:

Theorem: If f(x) and f’(z) are absolutely integrable over R and lim, 1+ f(2) = 0, then
FIF1(&) = i€ F[f1(S)-

HThere is some complex analysw sleight-of-hand here: the integral with respect to z should technically be over
the complex contour from —oo + + 2 to oo + 15 . Take a course in complex analysis to learn why this is the same as

the integral over R (for this integrand!).
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Proof. We simply integrate by parts:

N 8 h r)e % dr =i
+ / f(@)e & dz = i€ FI)(€)

—0o0

PO = <= [ Fae e = —(fa)e )

— 00

Under appropriate hypotheses, this may be iterated to obtain

FLIIE) = i€ F[f1(§) = =€ FIf1(6).

That is, F turns differential operations in x into algebraic operations in & (the frequency domain).

Given a PDE for u(x,t) on —oo < x < 0o, we apply F (at each t) to obtain a problem in u(&,t),

u(é,t) = Flu] = \/% /OO u(z,t)e " dx

We have the following'? mappings under this application:

N
U —

Uy +—— —ET
Uy — U

To illustrate, consider the IVP'?
Up = Ugg, u(z,0) = ¢(x) for x € R
Applying F to both the PDE and the IC yields
U, = -0,  UE0)=d() for E€R
Crucially: for each fixed &, the PDE has become an ODE in ¢ that can be easily solved,
(&, 1) = A(S, 0)e " = p(¢)e

We may now recover u(z,t) by applying F !,

u(z,t) = F ') = \/%_W /00 D(&)e Etete e (33)

This may or may not be analytically evaluable, but it can always be approximated numerically.

12There is once again a mathematician’s subtlety in exchanging the derivative and integral when claiming w; — ;.
13Strictly speaking, it is typically still necessary to specify a “boundary condition at co” to uniquely characterize
solutions. For problems we will consider, requiring « — 0 as |X| — oo is sufficient and will be implicitly assumed.
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Example: An important case is ¢(z) = d(x — z¢), a concentrated bump of heat at z,. Then

~ e—ifl‘o

d(¢) = \/% /_OO §(x — xg)e” “%dx = on

1 o 2, 1 2 1 (z—20)?
- u(x,t) = — et ge — —_ F1 [e‘t§ ] r— Ty = e
(@=z0)® . . .
G(z,xo,t) = ﬁe’ 2t is called the system’s Green’s function, impulse response function, or

fundamental solution. The evolution of G(z, z¢,t) with ¢ is shown below; see also Desmos.

G(z,xo,t)
e
71/ \ X
— % N— T
Xo

O

This exemplifies the procedure by which transform methods proceed, shown schematically below.

Spatial domain (X) Frequency domain (€)

(X,t) PDE, e.g. f’: t ODE, e.g.
Ut = Uzx j at = 7£2a
u(w,0) = ¢(x) 3 u(€,0) = B(¢)
PDE ! : ODE
solution E 3 solution
_
u(a, 1) i a1
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In transform problems, one commonly obtains u as a product of known transforms. Indeed, above
1 22

—=Flg] - F || 34

=10 (39

Unfortunately, it is distinctly not the case that F ! [F[f] - F|g]] = fg. This presents a question:
FFI) - Flol) =7

U, t) = B(e)e ™t =

This is answered by introducing the convolution operation between two functions f(x), g(z) on R.
The convolution f * g of f, g is simply a new function given by

(f *g)(a .F/ £ — 1)a(y)dy.

Example: The convolution of f(z) =z and g(z) = e is

1 & _y2 o x o0 _yz o €T
(f*g)(@:m/_oo(“y)e dy‘ﬁ/_of Y=
[

One can check that this operation is commutative and associative, and it distributes across addition:

fxg=gx*f
(fxg)xh=fx(gxh)
(g +g)=Ffxa+f*xg

The following is among the most significant properties of convolution.

Theorem (Convolution Theorem): if f and g are absolutely integrable, then

FIf = g] = FIf) - Flg] = F(&)G(©).

Proof.
—i€x _1 ifx
Fral©) = o= [ (rea@ede =g [~ [ - gt e o
:% = {/_Ooe’f“f(x— } y)dy
= % { / . e et f (Z)dZ] 9(y)dy

[m/ g | = [ awn] = Fo -8
L]

Convolution is precisely the spatial operation arising from multiplication in the frequency domain.

Hence, we have found

FUFIf] - Flall = f*g
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Day 12: Fourier Transforms in IVP’s Cont’d (Lessons 12, 14 (kind of))
How are general solutions related to the fundamental solution G(z,xz¢,t)?

Returning to the IVP
Ut = Ugy, U(ZE,O) :qb(l'),

recall that we found in (34) that the solution in the frequency domain w(¢, ) is

e 1) = —=Flo] - F e

V2t

The Convolution Theorem now tells us that the solution is

u(w,t) = Ffi) = V%Jr—l (7o) F [ %]] = =(0xc )

1 & (a— u)
=5 Ft/mqb(y dy

Being non-oscillatory, this integral often has (much) better convergence properties than that in (33).

An illuminating observation: this may be written in terms of the Green’s function G(z,y,t) as

u(z,t) /¢ Gz, y, t)dy

This is just superposition: considering ¢(z) to be the combination of the infinitum of impulses
d(y)d(x — y) at each y, the full response is the sum of the responses to these impulses.

Example: The solution to the IVP

I —I<z<l
Up = Ugy, u(x,O):H(x—i—l)—H(a:—l):{O |x|>f

is simply!*

@-2)? m)Q (1-z)/2vt )
u(z,t) = dy = / e *dz
2\/ \/_ 1—x)/2vt

- %[erf(lz_ﬁ)+ f(lzifxﬂ

Snapshots of this evolution are shown below. See also Desmos.

HRecall the error function erf(z) : / = ds.
\/>
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/%F*AM

Transform methods readily accommodate inhomogeneous problems. Consider the IVP
U = Uz + f(2,1), u(z,0) = ¢(z) for z € R.

Applying F to both the PDE and the IC yields
U= -+ FEt), U0 =) for E€R

As usual, we obtain an ODE in ¢ (at each fixed &) that can be straightforwardly solved,

(e, t) = e & [@(g) + /0 t F(&, 3)6525ds] ,

and one may recover u(z,t) via the inverse transform F~!. Again leveraging convolution,

u(:v,t)z/:qﬁ(y)G(r?y, dy+/ [/ f(y,s)G(x,y,t )dy] ds (35)

The first integral is the familiar homogeneous solution for the IC. The remainder,

z/ot [/:f(y,S) (2,9, )dy}ds

U = Uge + f(2, 1), v(z,0) =0 for z € R.

apparently solves

Interestingly, for each s € [0, ], the quantity in brackets is the solution (evaluated at t — s) to
Wy = Wyy, w(z,0) = f(x,s) for x € R.

That is, the contribution v(x,t) of the inhomogeneous term f(x,t) to u(z,t) is the accumulation of
the homogeneous responses w(x,t — s) to the IC’s f(z,s). This is Duhamel’s principle.

We revisit the final problem of Day 9, now in an infinite medium. We first exclude convection:

Example: Between ¢t = 0 and ¢ = 1, dye is injected at a constant rate r at x = 0 into a very long,
thin tube of initially pure water. What is the concentration p(x,t) of the dye?
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The appropriate IVP is
pt = Dpyr +rH(1 —t)(2), p(x,0) =0 for x € R.

Applying (35) with ¢(z) =0, f(x,t) =rH(1 —t)i(z):

p(:c,t)zfot U_Zf(y,S) (2,9, )dy] dS—T/ H(l—s) [/_Zé(y)G(x y,t — s)dy| ds
= r/ot H(1 - $)G(z,0,t — s)ds = /Omln(1 ! G(z,0,t — s)(rds)

Explicitly, Duhamel’s principle says: the dye at (z,t) is found by taking, for each time s < ¢, the
small amount of newly injected dye r - ds (if s < 1), computing how much diffuses to = from the
injection point 0 by time t (so, over the time interval ¢t — s), and “summing” over s. Plugging in G,

22

min(1,t) e 74D(t P) t

e 4Du

et == | e m/m oy VD™

— D\/E[2\/_e 4Du+x\/_erf(

t

)

max(t—1,0)

One can visualize this result in this Desmos demo.

Now let us consider the same problem with convection.

Example: Between ¢t = 0 and ¢ = 1, dye is injected at a constant rate r at x = 0 into a very long,
thin tube of initially pure water flowing with velocity v. What is the concentration p(x, t) of the dye?

The appropriate IVP is now
pr = Dpp —vp, + 7H(1 —1)(x), p(x,0) =0 for x € R.
One could proceed in multiple ways. To take the transform approach from scratch, apply F:
pi=—(DE +ico)p+ F(&,1),  pl&,0)=0,

where

F(&,t) = FrH(1 — t)d(z)] = rH(1 — t)F[d(z)] = ——H(1 — t).

Solving the ODE in ¢, one has

t min(1,t)

2 r 2., r 2,

plEt) = —(D&*+igv)t H(1- 3)6(D§ +iEv)s 1o — e~ (DEFiEV)(t=5) ¢
vV 2 0 vV 2 0
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Applying F~!, we find

min(1,t)
pla,t) = — / Fot [P0 miet=a] g
’ \/271' 0

_ T /min(l’t) F-1 [efD(tfs)éz}
V2 Jo

_ (z—v(t—s))2 2 —vu)2
4D(t—s) t ei( 4Du)

r /min(l,t) e r
_ € T gs— <
Var Jo VD(t —s) VAT Jmax(t-1,00 vV Du

r [ef(vu—m>+ mef<vu+x)} t
= | — T eD er
2v 2v/ Du 2v/ Du

Alternatively: one could first solve the homogeneous problem with an impulse 1C,

ds

z—v(t—s)

du

max(t—1,0)

Uy = Dy, — VU, u(x,0) = 6(x — xg) for x € R,

to find the Green’s function G(x, zo,t). Applying F,

U = —(DE +igvya,  a(§,0) =

so that
u(&,t) = Le—(Dfﬂisv)t—z{xo _ L o~ Dt | —i€(@o+ut)
var Var
= G(z,20,t) = u(x,t) = \/LQ_W —1 | ,—Di€? | —if(zo+ut) | _ \/%—W}—_l |:€_Dt£2i| o

vVAar Dt

With G, we can simply apply the general result (35) to find p, precisely as in the previous example:

o

2
min(1,t) 6—4(964758:3)

plz,t) = r/ot H(1—s) [/m 5(y)Gla,y,t — s)dy] ds = r/omm(l’t) G(x,0,t — s)ds

Vi) U™

giving the same integral as found above. One can visualize this result in this Desmos demo.

You will explore yet another approach in HW5.
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Day 13: Wave Equation Intro (Lessons 16,19)
How can we model the dynamics of waves?
We now leave behind the heat equation to treat another broad class of physical phenomena: waves.

Waves are essentially characterized by a quantity u(X,t) fluctuating about a reference state, e.g.
e Taut string or membrane waves: vertical position fluctuates about an average.
e Sound waves: air pressure fluctuates about atmospheric pressure.
e Waves through solids: lattice particle positions fluctuate about an equilibrium distribution.

e Gravitational waves: the notion of distance between spacetime points fluctuates about a trivial
background geometry.

Derivation details vary between applications. General idea: the restoring force is proportional to
the difference between u at (X,t) and nearby points'®. As this difference is quantified by Au,

Ut = CZA'U/ (36>

This is the wave equation with speed ¢, the prototypical hyperbolic PDE.

Optional: Rough derivation for pressure (sound) waves in air. Consider the total mass M (t) of air
in a 3D region U. If air flows with velocity vector field v(X,t) and has density p(X,t), then'®

M(t) = —/ (p9)-dA  —  M"(t) ~ _/ (pd) - dA
oU oU
If the only force driving air flow is its pressure gradient, then'” pd@ ~ —V P, so
M"(t) = / (VP)-dA = / (AP)AV.
ouU U
Dividing by the volume V of U and taking the limit V' — 0 gives py ~ AP.

Meanwhile, the ideal gas law says P = J\]}—Zp (M,, is air’s molar mass). If T' is constant'®, then

T T
R BT\ p

P = —— p—
tt M, Pt M,

so small pressure fluctuations satisfy the wave equation with speed ¢ = / %.

Now let u(z, t) be the vertical displacement at z of a taut string with linear density p(z) and tension
T(z,t). Define 0(x,t) as the angle made by the string with the horizontal at position x. Notably,

tan(0(z,t)) = ux(x,t).

5For small deviations. Most (not all) wave equation derivations invoke some smallness assumption, e.g. to throw
away higher order terms in a Taylor expansion.

16We neglect a p¢V term in M”: it is second order in deviations from an equilibrium with ¥y = 0 and po constant.

17 Another second-order term, p(V - ﬁ)\_f’, is dropped here.
18T actually does typically vary, minorly adjusting ¢, but that’s an issue for a thermodynamics class.
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T(x + Ax,t)

u(x + Az, t)

u(z,t)

We apply Newton’s second law to a segment of width Axz. The horizontal component reads
T(x + Az, t)cos(0(z + Ax,t)) — T(x,t) cos(f(z,t)) =0 = (T'cos(d)), =0

Hence, the horizontal tension component 7}, (t) := T cos(#) is constant in x.

For the vertical component, note that the segment mass is approximately p(z)/(Ax)? + (Au)?, so

p(2)V/ (Az)? + (Au)2uy =~ T(x + Az, t)sin(0(z + Az, t)) — T(x, t) sin(f(z, 1)),
and dividing by Az and taking the limit Ax — 0 gives
pV 1+ (ug)?uy = (T'sin(0)), = (T, tan(0)), = Ty (tan(0)),.

Leveraging u, = tan(#), this reads
psec()uy = Thy,

Now we must invoke small displacements: for |#| << 1, sec(f) ~ 1, so we then have

and small displacements u(z,t) satisfy the 1D wave equation uy = c®u,, with speed ¢ = %.

This gives rise to a similar picture, emphasizing concavity, to that seen with the 1D heat equation:

u

u(z,t)

Ut (.’L’, t)
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Now, however, arrows represent acceleration (of the string) rather than velocity (of temperature).
As the LHS is acceleration, additional forces (gravity, friction, etc.) simply add to the RHS, e.g.

2
Uy = C Uy — PUr — YU — g

has a frictional term [u;, a restoring force term yu, and a gravitational term g.

It is again natural to pose initial boundary-value problems. Common physical boundary conditions:

e Controlled end points:

u(0,1) = g:(?)

e Prescribed (vertical) force at ends:

e Elastic restoring force to a moving equilibrium:

Thux«)’ t) = k(u(()? t) — g1 (t))
Thufc(Lu t) = _k(u(L7t> - gQ(t))

While interpretations have changed, we saw these with the heat equation. Broadly, linear BC’s,
ou
au+ pb— =g,
Ba, =9
are of particular interest. For IC’s, we must now specify both u(z,0) and u(z,0).

Given this data, IBVP’s may generally be approached in very much the same way as before.
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Day 14: Wave Equation Structure (Lessons 17,18)

What are the qualitative structures of wave solutions?

Before treating IBVP’s, let’s see how the 1D wave equation yields wave phenomena. Consider
Uy = Py = (02 =20 u=0 <= (0,—cd,) (0, + cO)u =0,

so u(z,t) will solve the wave equation if either (0; + c0,)u = 0 or (0 — c0,)u = 0.

These are first-order PDE’s easily solvable via characteristics: general solutions are

(O + cOp)u=0 = u(z,t) = F(x — ct)
(O — cOp)u =10 = u(z,t) = G(x + ct)

Moral: there are two families of characteristics for the 1D wave equation, x —ct = C' and x+ct = C.

t

y

r4ct=C ““‘

VoK
O
VAV aVaAVaAVAVAVA AVAVAVAVAVAVAV,

The 1D wave equation has two families of characteristics along which information propagates.

Linearity ensures that combinations of the above solutions also solve the wave equation,

u(z,t) = F(x — ct) + G(z + ct)

In fact, all solutions have this form. To see this, consider the change of coordinates
E(x,t) :=x + ct, n(x,t) .=z — ct.
In the coordinate system (&, 7), define the quantity v(§,n) by
v(&(x,t),n(x, 1) = u(z, ).

Taking partial derivatives, one finds

Uy = V&tV = Vet

u = v tuvgn = C(Uf - Un)
Uz = (ux)ﬂc = (UE + Un)égx + (Ué + U??)nnx = Vee + 2Une + Uy
uy = (u)y = c(ve —vy)e& + clvg —vg)yne = 02(7}5& — 2056 + V)

o4

B
MK



Hence, restating the wave equation for u in terms of v reads
0=ty — Cttgy = (Vg — 205 + V) — (Ve + 209¢ + V)] = —4cP e,
giving simply v, = 0. This may be solved immediately by simply integrating:

iy = [ vde = [ 0a = 10

— = [udn= [ 1w = F + 606,
where f(n) is arbitrary, F' is an antiderivative of f, and G(§) is arbitrary. Now (37) reads
u(z,t) = F(n(x,t)) + G(&(x,t)) = F(x — ct) + G(x + ct)

Hence u(z,t) is always comprised of pieces shifting steadily, either to the right or left, at speed c.

We use this decomposition to solve the wave equation IVP on an infinite domain, —co < x < oo:
Uy = Uy, u(z,0) = o(x), u(z,0)=1e¢(x), forzelR
We simply impose the IC’s on the general form found above:
é(x) = u(z,0) = F(z) + G(x),
P(z) = u(x,0) = G (x) — cF'(2).
Integrating the latter yields, for some constant C|,

Glz) - F(z) = é /0 " (s)ds + C

A bit of algebra now yields

1 C

Pla) = 50(0) = 5 [ w(sas— 5.

Gla) = 50(a) + 5 [ wlshds+ 5,

and plugging into the identity u(z,t) = F(x — ct) + G(x + ct) gives

u(z,t) = % [p(x — ct) + ¢(x + ct)] + % /x ) Y(s)ds (38)

—ct

This result is known as the D’Alembert solution. It implies that u(xo, ty) depends only on the initial
data for zg — ctg < x < 2 + cty: the wave equation cannot propagate information faster than c.

t

('1'07 tO)

/ \
To — Ct() To + Ct()

19This is in stark contrast with the heat equation, under which information propagates infinitely quickly.
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Example: The solution to the IVP
Ut = CPUgy, u(x,0) = e u(xz,0) =0, forxeR
is given immediately by (38),
u(z,t) = % [e_(“”_d)z + e @tet)?|

The initial Gaussian profile is comprised of two pulses moving to the left and right: see Desmos.

u

/ W N

Example: The solution to the IVP

Uy = gy, u(z,0) =0, wu(z,0)= e, forz €R

is also given immediately by (38),
u(z,t) = g lerf(x + ct) — erf(z — ct)].
c
The Gaussian’s integral is split into two subtracted pieces moving to the left and right: see Desmos.

u

Points (zo, tg) where u has leveled off (to \2/_§> have the Gaussian’s bump within (x¢ — cto, o + xto)
[

Now consider a semi-infinite IBVP, modeling (say) a very long taut string fastened at one end:

Utt = CQUm’
w0,8) = 0, 0<t< oo,
U(ZL‘,O) = gb(x),
u(z,0) = ¢Y(x), 0<z<o0.
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https://www.desmos.com/calculator/acfvoxvhbm
https://www.desmos.com/calculator/3ahka0ru61

It’s still true that u(z,t) = F(x — ct) + G(x + ct), and the IC’s yield the same algebra as before, so

F(z) = 50(2) / (s

1/J( )ds (39)

200

Since ¢(z), ¥ (x) are only defined on x > 0, however, these are now only meaningful for x > 0.

No issue evaluating G(z + ct): shifting data to the left is unambiguous.

Evaluating F'(x — ct) is problematic (for ¢t > x): what is shifting right into our domain from x < 07
Better question: what must be shifting in from = < 0 to maintain the BC u(0,¢) = 07

Answer: precisely the opposite of what is shifting out to x < 0. This is achieved by replacing ¢ and
¥ in (39) by their odd extensions ¢, and 1),, defined by

o) = o(x) x>0
Po(@) : {—qb(—a:) x <0

(similarly for v),), to specify F' and G everywhere. The semi-infinite IBVP solution is then simply

1 1 x+ct
u(z,t) = = [¢po(x — ct) + po(x + ct)] + — Vo(s)ds
2 2c T—ct
Example: According to this formula, the solution to the IBVP
U = gy,
u(0,t) = 0, 0<t< oo,
U(JI, 0) — e—a(x—2)27
u(z,0) = 0, 0<z< o0,

is given by splitting the odd extension of the Gaussian into pulses moving left and right: see Desmos.
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On z > 0 (the actual solution), the left-moving pulse “reflects” off of z = 0 with a sign change.

[]
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https://www.desmos.com/calculator/rqjnzgcyxo

Day 15: Wave Equation IBVP’s (Lesson 20)
How do we solve finite wave IBVP’s?

Finally, we consider IBVP’s on a finite interval. The prototypical such problem is

Ut = CUgy,
u(0,t) = 0,
u(L, = 0, 0<t<oo, (40)

We may proceed by separation of variables, positing u(z,t) = X (x)7T'(t), so that the PDE reads

’ 2 31 () X"(x)
X(2)T"(t) = X" (2)T(t) = 2T X(o) -7,

giving T" + ¢ 2T = 0 and the familiar spatial BVP
X"+ XX =0, X(0)=X(L) =0,

with solutions X,,(z) = sin(2£2) for A, = 2. T,(¢) is qualitatively different from before, however:

t t
T.(t) = a, cos(nzc ) + b, sin(m;c ),

giving oscillations in time rather than the exponential decay characteristic of heat problems.

The separable solutions to our wave BVP, then, are

Up(z,t) = (an cos(m;d> + by, sin(?)) Siﬂ(n—ZB).

Such solutions are often called standing waves, and u,, is sometimes called the nth harmonic.

uy(z,t)
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Note that even though standing waves appear stationary, the identities
nmet\ . (mr:c) 1 [ ) (mr( t)) L (mr( n t)ﬂ
cos{ —— Jsin{ —— ) = |sin{—(z—c sin{ —(z +c ,
. [(nmet\ . (mrx) 1 [ (mr( t)) <n7r< . t))]
sin| —— )sin(——) =5 |cos( - (z—c cos{ (@ +c

indicate that these are still comprised of left- and right-moving components.

One can see standing wave solutions dynamically in this Desmos demo: play the ¢ slider and vary n.

As (40) is homogeneous: superposition! Can combinations of u, accommodate any initial data?

(e, t) = i <an cos(mft> +b, sin(nzd)) sin(?) (41)

n=1

This is straightforward to answer:

o(z) = u(z,0) = Zlan sin(?) 0 — %/OL 5(2) sin<n2x>d$
n=
s L
Y(x) = u(r,0) = ; %bn sin(?) b, = % 0 b() Sin<n2x>d:1:

As Fourier sine series can represent any “nice” function, (41) can indeed solve (40) for “nice” ¢, 1.
Example: Solve the above IBVP (40) with L =1, ¢(z) = 2(1 — z), ¢¥(z) = 0.

The solution takes the form (41) with b, = 0 and

a, = 2/0 x(1 — z) sin(nrx)dx = ;1= (=1)"]

(this was computed on Day 5), so that

8 = cos((2n + 1)met) sin((2n + 1)7a)
uz,t) =5 ;} 2n +1)3

_____
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https://www.desmos.com/calculator/cfpmmys859

One can see this dynamically here. Note the shape distorts over time: this is not a standing wave.

[
In this way, the analysis of waves on a finite interval is procedurally similar to the analysis of heat.
Can (40) be solved as u(z,t) = F(x — ct) + G(x + ct)? What are F' and G outside of [0, L]?

HWT: resolved by replacing ¢ and v by their periodic odd extensions f, and g, on R,

1 x+ct
u(z,t) = 5 [folx —ct) + fo(z +ct)] + % / t Go(s)ds

Example: See this Desmos demo of the solution to

2

Ut = C Ugg,
u(0,t) = 0,
u(l,t) = 0, 0<t< o0,
w(x,0) = e o#==1/2)?
u(z,0) = 0, 0<z<1.

Pulses now effectively reflect off of both boundaries.
O

Such a succinct description is atypical when one adjusts BC’s and the PDE. Depending on the
problem, one can employ SoV or attempt to construct F' and G.

60


https://www.desmos.com/calculator/qq4idmc13o
https://www.desmos.com/calculator/uazgqitiq2

Day 16: Canonical Forms (Lesson 23)
How comprehensive are our PDE prototypes?

Recall that the most general second-order linear PDE in two variables (z,y) is

Augy + Bugy + Cuyy +Duy + Euy + Fu =G, (42)

Principal part
where each of A through G may be functions of (z,y), and these fall into three basic categories®’:
(1) Parabolic (B? — 4AC = 0). Prototype: uz, —u; = 0 (heat equation), with A =1, £ = —1.
(2) Hyperbolic (B? —4AC > 0). Prototype: uz, —u; = 0 (wave equation)?!, with A =1, C = —1.
(3) Elliptic (B*> —4AC < 0). Prototype: g, + 1y, = 0 (Laplace’s equation), with A = C = 1.

We will see that for any PDE (42), the principal part may be made to agree with one of the three
prototypes via a coordinate change. When this is achieved, the PDE is said to be in canonical form.

We begin with an arbitrary change of coordinates &(x,y), n(z,y). Define the quantity v(§,n) by

v(€(x, ) n(z,y)) = u(z,y).

We may apply the multivariable chain rule to relate derivatives of u to those of v:

Uy = Vey + Vyla

Uy = Ve&y + Vyly
Uge = Vee + 2enballe + VTl + Vebaa + Uyllea
Uy = Vee&ely + Ven(§ally + EyMn) + VpyMatly + Velay + Vylay
Uyy = U&ﬁfz + 20gn&yny + ")nnnz + Velyy + Uy

If u satisfies (42), substituting these identities yields a PDE for v(&, n) of the form
Zv& + Evfn + Uv,m + Evg + Evn + Fv=G.
It is a straightforward, if tedious, task to relate the barred quantities A-G to the original A-G:

= AL + B&&, + CE

= 248, + B(&umy + Eyne) +2C&,n,

= An2 + Bnany + Cn;

= Alex + BEuy + C§y, + D&, + EE, (43)
= ANy + Bngy + Cnyy + Dy + Eny

F

=G

Ql = = O Al ® o

20Tf the coefficients are not constant, this categorization may vary throughout the zy plane.
2or uye =0, with B =1
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HWT: verify that the PDE’s for v and v have the same type (if {(z,y) and n(z,y) are real).
Loosely: we have two coordinates to choose, so we may impose two constraints on the principal part.

Recall: the wave equation can be made to have principal part vg,. In general, this would require

2
0=A4 <— O:A(g—m> +B(£—x)+0,

&y &y
2
0=C <+ OzA(&) +B(@)+C, (44)
My Ty

giving two instantiations of the same quadratic equation. Assigning one root to each coordinate,

& —B+VB?-4AC n. —B—+B*—4AC (45)
& 24 ’ ny 24

These determine the level sets of £(x,y) and n(z,y), curves along which £ and 7 are constant.

Indeed, if a curve §(s) := (z(s), y(s)) satisfies that £(Y(s)) is constant, then

dy _ &

d d d
0= =[G = &0 + 6, =

ds
As &, /&, is known, this first-order ODE can, in principle, be solved for such curves in the zy plane.

Y

dy _ m. dy _ &
dx My dx &y

Characteristics of a hyperbolic PDE, generally curved, are level sets of the new coordinates &, 7.

This description holds so long as the expressions in (45) are real, i.e. if the PDE is hyperbolic. These
curves are then the PDE’s characteristics, and (45) are therefore called the characteristic equations.

Solutions are generally implicit: f(z,y) = C. As £ is constant along these curves, replacing C' — ¢
to obtain £(z,y) = f(z,y), and doing similarly for n, yields a choice of £, n for which (44) holds.

This choice of £, n transforms a hyperbolic PDE into canonical form, having principal part ve,,.
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If desired, one could obtain the more familiar principal part w; — w,, by now taking (see Day 14)

€)= 56+ ) e = 5€ ).
Example: Convert the hyperbolic PDE
Ugg + DUgy + 4ty + zU, =0
to canonical form. What are the canonical coordinates &(x,y), n(z,y)?
Here A=1,B=5,C=4,s0 B> —4AC =5 —4-1-4=9 > 0, so this is indeed hyperbolic.

The characteristic equations read

& _ —B+VB*—4AC | n. —B-—+vB*—4AC A
& 2A - ny 24 o

and hence characteristics are determined by

d w
d_i/;:_g_yzl = y=2+0C = |[{zy)=y—z
d 2
Yoy — y—dat+C = [y —y—4z
dx My

We can now convert from scratch or plug into (43). Of course, A = C' = 0 by construction, and
B = 246, + B(&an, + &n2) + 2061, = 2(~1)(—4) +5(~1 —4) +2- 4 = -9,

Similarly D = D¢, = —2, E = Dn, = —42, F = G = 0. Using x = (£ —7)/3, the canonical form is

£
Vey + S5 (v + 4vy) = 0

We could now set z(&,n) = (£ +n)/2 and (&, n) = (£ —n)/2 and define w(z,t) by

w(z(&,m),t(&n) =v(&n)

The equivalent PDE for w(z,t) is

4t
Wit — Wyy + 2_7(3wt — 5’[1)2) =0

Above, characteristics were straight lines. We now treat a case with curved characteristics.

Example: Convert the PDE?2
Uy — Tlyy = 0

Zrearranging to uy, = Uy, /T, this is the wave equation with a speed which decreases with z.

63



to canonical form on the half-plane = > 0.

Here A=1, B=0,C = —x,s0 B> —4AC = 4x > 0 for > 0, so this is indeed hyperbolic.

The characteristic equations read
¢& —B++B?2—4AC n. —B—-+vB*-4AC
- = - \/Ea - = = _\/Ea

& 24 My 2A

and hence characteristics (graphed below) are determined by

j—y:—g—x:—ﬁ — 3y=-2202+0C, = |&(x,y) =3y + 22°/°
€ y

d v
d_y:—"—:\/i — =22 +C, = |n(z,y) =3y — 2257
X My

Constant 7

Constant &

Note: these map onto the region ¢ > 7. Plugging into (43), we find A=C = F = G = 0 and

B = 26m, —2z&m, = —18z—18z = —36z
D = §ux = 5z
inl 3

Using 2%/2 = (¢ — 1)/4, the canonical form is then

Ve — Up
ey — 7" _
)
In terms of z(¢,n) = (£ +1)/2 and t(£,n) = (£ — n)/2, this becomes? (on ¢ > 0)
w
Wi — Wyy + 3_; =0

23This is the wave equation with a fized speed, but with frictional damping that lessens with time.

64



What about non-hyperbolic equations? Elliptic case: one can follow the procedure, but £(z,y) and
n(z,y) become compler, with £* = n. Characteristic solutions are no longer curves in the zy plane.

For a real coordinate transformation, instead take

1 1

a(z,y) = s (€(x,y) +n(z,y)) = Re(§), Blz,y) = —

2( 2i<£($7y>_n(zﬂy)) :Im(f)

This yields a PDE with principal part v,, 4 vgs, as desired.

Example: Convert the PDE
Ugg + TUyy = 0

to canonical form on the half-plane = > 0.
Here A=1, B=0,C =z, s0o B> —4AC = —4x < 0 for x > 0, so this is elliptic.

The characteristic equations read
n. —B—+vB?2—4AC

_ 2
& _—B+vVB —4AC —iVEL Mo _ -
&y 2A My 2A

and hence “characteristics” are determined by

d ©

d_y g =—ivo = 3y=-2i’?+C1 = {(x,y) =3y + 22
€L y

d

d—y — i = 3y=2i32+C, = q(z,y) =3y — 2z’
T 77y

As these are complex, we instead utilize the real and imaginary parts,

Oé(&?, y) = Re(f) = 3y7 B(xy y) = Im(ﬁ) = 2%3/2.
We could plug into (43) (with &, n — «a, B everywhere). Here, it’s easy to proceed from scratch:
Uy = VaOlg + Uﬂﬁx = 3\/5’05
Uy = vaozy + vy = 3v,

Upe = — =V + 9TV

"

Uyy = Maq

Plugging into g, + xu,, = 0 directly yields

92 (Voo + Uﬁg) + vg = 0.

3
2\/x

3/2 the canonical form is

Slightly rearranging and using § = 2z

Uaa—l—vgﬁ—f—BB 0
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Optional: Parabolic case

One now has only one characteristic equation. Defining {(z,y) as usual and taking n(z,y) to be
anything else’* (e.g. n(x,y) = y), one has A = B = 0, and the v PDE reads

6% + Evg + Evn +Fv=G
with C' # 0. Dividing by C gives

Theorem: Any second-order, 2D, linear, parabolic PDE may be cast in the form

Uﬁﬁ + Ll[v] = 9(57?7)7

for some first-order linear differential operator L;.

This is the sense in which an arbitrary parabolic PDE is similar to the heat equation.

24“Else” here means 7 should be independent of ¢, i.e. the transformation (z,y) ~ (&,7) must be (locally) invertible.
Of course, this is necessary for it to be meaningfully called a “change of coordinates”.
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Day 17: Wave Equation in 2D, 3D (Lesson 24)
How do waves propagate in higher dimensions?
We are well-versed in the solution of hyperbolic and parabolic PDE’s in one spatial dimension.
We now treat a higher dimensional problem. Namely, we consider the full-space 3D wave IVP,

Uy = AU = A (Ugy + Uyy + Uss), u(%,0) = ¢(X), w(X,0) =9(X), forxecR? (46)
This may be approached via the Fourier transform. Recalling from HW5 that F[Au] = —||€]|%q,

Uy = —EPa, AE0) =), W(E0)=T(E), for &R

This ODE IVP in t may be straightforwardly solved, yielding

sin(cugut) o sin(cHgHt) R sin(cuau)

A t) = B(E) cos(cllé]|t) + U(E)—=— =0, | ®(E)— = V(E)— =
< ) cl&ll cl&ll cl&ll
To find u(z,t), then, we must evaluate
in ¢||€]|¢
- el (1)

cl€ll

Toward this end, define the spherical mean of a function f on R? to be a new function Mg[f] given
at X by the mean value of f on the sphere Sg(X) of radius R centered at X,

Ml = o [ s@aa

You will show in HWS that B
FIMalf) = FE >Sm<”§”R>
" I€1R

so that the inverse transform (47) is simply tMy[f]. We may leverage this to evaluate F![u]

Y

uw(X,t) = 0p(tMy[@]) + tMe[1)] (48)

This is the solution to (46) and 3D analogue of the D’ Alembert solution, known as Kirchoff’s formula®.

Crucially: u at (X, t) is determined by values of ¢ and 1) on the sphere centered at X with radius ct.

Physically: disturbances travel at ezactly ¢ in 3D. In 1D, disturbances travelled no faster than c.

25This name typically refers the slightly more explicit expression u(X,t) = My {gb—i— ctg—fi + ti/):| (with % the

derivative normal to the sphere), but we won’t concern ourselves with going this far.
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Ty T r = ct3

A point-like wave disturbance at t = 0 propagates in 1D from o (left) and in 3D?® from %, (right).
On the left, an observer at x, which first sees the wave at t5 continues to see it indefinitely.
On the right, the observer at X, only sees the wave signal instantaneously at to.

Waves emanating from a point are shown above. The 3D disturbance is thickened below.
In any dimension, waves have sharp leading edges: it is felt suddenly upon reaching the observer.

In 3D (but not 1D), waves also have sharp trailing edges: it is suddenly not felt upon passing by.
This feature of 3D waves is known as Huygen’s principle.

AT0
DANN

A spherically-concentrated disturbance with radius rg propagates from X; in 3D. At each t, the region in space
feeling the disturbance is a spherical shell with central radius ct and thickness Ar = 2rg.
The observer at X, sees the wave for a short duration as it passes by.

We've solved the full-space wave IVP in 1D and 3D. Now consider the 2D problem,

Uy = AU = A (Up + Uyy), u(%,0) = ¢(X), w(X,0)=1(X), forxcR? (49)
Approach via method of descent: a solution to (46) with ¢, ¥ independent of z will also solve (49).

Indeed: 1D, 2D, and 3D waves can all propagate in 3D space. In this context, 1D waves are called
plane waves; 2D waves are called cylindrical waves; and 3D waves are called spherical waves.

To solve (49), we simply replace, ¢, ¥ (x,y, z) = ¢, ¥ (z,y) in the solution (48),

) 1 B 1 }
W(Z,t) = 0, (W% / » ¢<y>dA) - / R

26Take note that the circles here represent spheres in 3D space.
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Writing ¥ = X + (Z,9, 2) and using Z = /(ct)? — 22 — §2 on the sphere of interest, we have

¢
dA = \/1+ 22 + 32 dFdg = ¢ _ 7 dj,
V(ct)? — 2 — g

with (Z,9) varying over a 2D disc D, of radius ct (centered at & = g = 0). Writing X = (z, vy, 2),

1 'WI+@y+ﬂ)dd~ At )

o waa-

and similarly for ¢. Here, we've abbreviated 2’ := x + 7 cos(0), ¢’ := y + 7sin(6).

Fdido,

Hence, the solution to (49) may be written (this is Poisson’s formula®")

Y y) T elly)
u(z,y,t) =5 [/ \/rrdrdG—i-@t (/ O drd@)] (50)

As an integral over D, (not its boundary), this 2D solution does not respect Huygen’s principle.

2D waves decay over time as they pass an observer, but they do not have a sharp trailing edge.

A point-like wave disturbance propagates in 2D from X.
At each t, the region in space feeling the disturbance is a disc with radius ¢t centered on Xj.
While it does decay over time, in principle the observer at X, sees the wave indefinitely after ts.

This 2D picture generally applies in even dimensions, while the 3D picture applies in odd dimen-
sions (outside of the special case of 1D).

One could further descend to 1D, replacing ¢, ¥ (z,y) — ¢, 1(x) to recover the D’Alembert solution.

2T Again, this typically refers to a slightly more explicit expression (with numerator evaluated at (2',7')),

27 ct
¢>+ra + i)
Fdrdl
um 1) 27r0/ / V()2 =72
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Day 18: Higher dimensional IBVP’s (None)
How can we solve IBVP’s in higher dimensions?

Consider the prototypical 2D wave IBVP,

Ugt = A2Au,
uw(0,y,t) = 0, uw(z,0,t) = 0,
u(l,y,t) = 0, w(z,1,t) = 0, 0<t<oo, (51)
u(z,y,0) = oé(z,y),
Ut<x>yvo) = @D(iﬂay)» 0<z,y<1

This 2D wave IBVP on a square may model waves on a thin, taut membrane, e.g. a square drumhead.

We may proceed via separation of variables: seek separable solutions u(x,y,t) = X ()Y (y)T'(t),

X@YWT'() = EX"@Y T + EX@Y W) e om= 4

The LHS is independent of z,y and the RHS is independent of ¢, so we must have

T _ X N Yy _ — Yy B X
2T X v Y X

This last equation has a LHS independent of  and RHS independent of y, so we must further have

X// Y//
==l ==kl
X Y

We encounter familiar BVP’s for X (z) and Y (y), with no nontrivial solutions if I > 0 or k —1[ > 0.

Hence, let us set | = —p?, k — [ = —v?, and k = —)\? := —p? — 2. Collecting, we’ve found

X"+ 12X =0, X(0)=X(1) =0,
Y+ %Y =0, Y(0)=Y(1) =0,
T" +ANT =0, A= 4 2

The BVP’s for X and Y are simply two copies of the same problem we’ve seen repeatedly, yielding
Xn(x) = sin(nmx), Y () = sin(mrx),
for i, = nm and v, = mm. Each combination of these yields a A value, A2 = 7%(n? + m?), with
Tom(t) = G cos(cApmt) + bpm sin(cApt).
We have therefore found that there is a two-parameter family of spatially distinct separable solutions,
U (T, Y, 1) = [ cOS(ApmCt) 4 bpm sin(Apmct)] sin(nrax) sin(mry).

These are 2D standing waves: see Desmos. As usual, we ask if we can build v via superposition,
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o
2

u(z,y,t) = Z [@nm COS(AnmCt) + by sin( A, ct)] sin(nrzx) sin(mmry) (52)

n,m=1

This reduces to the questions

¢(l’,y) - u($7y70) ; Z Apm Sin(nﬂ.’lf) sin(mﬂy),
n,m=1
U(z,y) = w(z,y,0) < Z A nmbpm sin(nmx) sin(mmy).
n,m=1

This can indeed be achieved for “nice” ¢, : it is simply a Fourier sine series in each direction.

Namely: as a function of x, we may expand ¢(x,y) in a sine series in x with y-dependent coefficients,

00 1
Z a,(y) sin(nrx) an(y) = 2/ ¢(x,y) sin(nrz)dz.
n=1 0
As functions of y, each a,(y) may be expanded in a sine series in ¥,
Z [Z Ay, SIN mﬂy)] sin(nmx) = Z A SIN(n7z) sin(mmy),
n=1 Lm=1 n,m=1

1

M

a,(y) sin(mmy)dy = 4/ / o(z,y) sin(nrz) sin(mry)dzdy.
0

Applying the same to ¥ (z,y), we've found that (52) will indeed solve (51) if one takes

) sin(nmx) sin(mmy)dxd

1 1
Ay, = 4/ / o(z,y) sin(nrx) sin(mry)dzdy, bupm =
0 Jo

<

Example: Solve the IBVP (51) with ¢(z,y) = zy(1—2)(1—y) and ¢ (x,y) = 0.1sin(27x) sin(37y).

6n,25m,3
10cA2,3

Clearly, by, = . For a,,,, we simply apply the formula to compute

4/ / ¢(z,y) sin(nmx) sin(mny)drdy

= [ r(l—=z sm(mr:c)dx} . {2/0 y(1 — y) sin(mmy)dy
<n7r1>3[ GV G 1t~ 5"
_ ﬁ 1= ()1 = (™).

Putting these together in (52), we have (watch this evolve in this Desmos demo)
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Sin()\zgct)
100)\2,3

sin(2mz) sin(3my)

64 = sin((2n + 1)7wz)sin((2m + 17
Z (( ) ) (( ) y) COS()\Qn+1,2m+1Ct) +

(2n+1)3(2m +1)3

m
In this way, IBVP’s on a rectangular domain often reduce to familiar problems, except that there
is one spatial BVP in each coordinate direction.
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Day 19: Circular Drumhead Problem; Bessel Functions (Lessons 30,31)
How do we solve IBVP’s on more general domains?

A realistic drumhead might be modeled on a circular domain rather than rectangular, i.e. by

m = c*Au,
u(z,y,t) = 0 for 22 + 9% =1, (53)
u(x,y,()) = ¢($,y),
u(r,y,0) = Y(z,y), 0<a?24+¢y><1.

The separation ansatz u(z,y,t) = X(x)Y (y)T(t) is no longer appropriate, as the BC does not
descend to X or Y individually. We can at least separate u(z,y,t) = U(z,y)T(t), which yields

T AU

— —)\2
2T U

(HWS: the separation constant here cannot be positive) and leads to

AU+ N\U =0,
T" + AN°T = 0.

The T equation is familiar and straightforward, giving the usual temporal oscillations
T(t) = Acos(Act) + Bsin(Act).

The spatial equation is known as the Helmholtz equation, arising in a variety of settings.

The Helmholtz equation on a domain in R" paired with a BC forms an elliptic eigenvalue problem.
The breadth of such problems is much richer beyond 1D.

To proceed via our typical methods, we generally must first adapt our coordinate system to the BC.
The IBVP (53) is simplest in polar coordinates (r,0) on 0 <r < 1,0 < 6 < 27, defined by
x = rcos(f), y = rsin(6).

Recall from HW7: in polar coordinates, the 2D Laplacian Au = u,, + u,, becomes

1
Au = Uy, + U + 3 6o,

so the Helmholtz equation and its BC in polar coordinates comprise the BVP
1 1
Upr + =U, + —Ugg + XU =0, U(1,0) =0
r r
This is now amenable to further separation via the ansatz U(r,0) = R(r)O(0), giving

0= R"(r)©(0) + %R’(r)@(@) + %R(r)@”(@) + A2R(r)O(0)
(_)// 5 R// R/

— —6:7’?—1—7"?4—/\27“2:]{:.
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These must be constant (denoted k) in the usual way. We obtain a periodic SL BVP in ©,
0"+ kO =0, ©(0) =0(2n), ©'(0)=06'(2n").
These BC’s, necessary for U to make sense, require k = n? (n > 0 an integer). Solutions are then
©,,(0) = Acos(nf) + Bsin(n)
Turning to the BVP in R on 0 < r < 1, it now reads
R +rR + (Mr? —n?)R =0, R(1) = 0. (54)
This irreqular SL BVP requires an additional BC at r = 0: |R(0)| < 00?® is sufficient.

This ODE, while famous, is likely unfamiliar. It is a slight variation (if A # 0) of Bessel’s equation,

[BQyH—l—ZL‘y/—i—(IL‘Q—OfQ)y:O,

with o € R a parameter?”. Solutions generally cannot be expressed in elementary functions.

As the ODE is common, however, a set of linearly independent solutions are named,

Jo(z) order o Bessel function of the first kind,

Y,(z) order a Bessel function of the second kind.

One may define J,(x) via the power series resulting from the method of Frobenius,

Jol) = ZO m!- réy;ljrma 1) <§>2m+a ’

m=

while Y, (z) may be defined®® as

Jo(x) cos(am) — J_q(x) ‘

sin(am)

Yo(z) =

See Desmos for plots. Note that, J,(x) ~ 2* near x — 0, meaning Y, (z) diverges at = — 0.

Returning to our BVP (54), solutions to the ODE for R(r) are, for each n > 0,
R,.(r) = ChJn(Ar) + D, Y, (Ar).

The BC |R(0)| < oo now forces D,, = 0, so that our radial solutions are simply J,(Ar).
The BC R(1) = 0 stipulates J,(\) = 0. Being oscillatory, J,, has infinitely many roots .
That is: solutions to the BVP (54) are R,,,,(r) = Ju(Apmr), With A, the mth positive root of J,.

See Desmos for plots. The \,,, have no formula, but are well-tabulated and readily computable.

28 A distinctly reasonable assumption for our drumhead.
29General theory of Bessel functions allows o € C and complex arguments, but we have no need for this generality.
30This appears singular for integer orders o = n, but one may simply define Y, () := lim Y, (7).

a—n
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n

Ao |0 1 2 3 4
1 | 240 383 5.13 6.38 7.59
2 | 552 7.02 842 976 11.06
m 3 | 865 10.17 11.62 13.02 14.37
4 | 11.79 13.32 14.80 16.22 17.62
5 | 14.93 16.47 17.96 19.41 20.83

We’ve found that all polar-separable solutions to the spatial BVP (in both r and @), then, are
Upin(7r,0) = Jy(Aumr) [A cos(nf) + Bsin(nd)] .
Appending the temporal part, we’ve obtained all polar-separable solutions to the BVP in (53),

Unm (1,0, 1) = T (A7) [(Apm cos(nf) + By, sin(nh)) cos(Apmct)
+ (Chum c08(n0) + Dy, sin(nd)) sin(A,mct)]

These are our standing waves, the fundamental modes of a circular drum’s vibration3!: see Desmos.

3'While this whole mess must be kept when building a general superposition (beware: the text erroneously claims
otherwise), the n, m-th mode in isolation has the simpler-looking profile, up to a time shift and rotation, of

In(Anm1) cos(nf) cos(Apmct)
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Day 20: Circular Drumhead Cont.’d; Fourier-Bessel Series (Lesson 30)

We continuing our discussion of the circular drumhead IBVP (53),

gy = A,
u(w,y,t) = 0 for 22 +9? = 1,
u(z,y,0) = o(z,y),
u(z,y,0) = P(x,y), 0<a”+9° <1

We now ask if we can build u(r, 6,t) via a superposition of the standing waves found above,

u(r,0,t) Z Z Jn(AnmT) [(Apm c0s(n0) + By, sin(nd)) cos(Apmct)

n=0 m=1

+ (Crm cos(n@) + Dy, sin(nf)) sin(Apmct)] (55)

This reduces to

o(r,0) = u(r,0,0) < i i": T (AnmT) (Apm, cos(n) + By, sin(nh)),

n=0 m=1

b(r,0) = wu(r,0,0) = ZZc)\nmjn(/\nmr)((?nmcos(nﬁ)+Dnmsin(n9)).
n=0

=0 m=1

This may look somewhat daunting, but there is a familiar core. Let us focus on the first of these,

o(r,0) ~ Z Z T (M) (A, cos(n) + By, sin(nh))

= Z [ Z A I )\nmr)> cos(nd) + (Z B Jn( )\an)> sm(n@)]

o(r,0), at each fixed r, has period 27 in 6, and the outer sum over n is apparently its Fourier series.
The inner sums over m, then, must yield the familiar Fourier coefficients (23) (with L = ),

1 2

2 Jo

Z AomJo(Aomr) =: ap(r) =

m=1

2T
Z Apmdn(Anmr) =1 a,(r) = %/ ¢(r, 0) cos(nd)db, n>0
m—1 0

o(r,0)do

oo 2
Z In(Apmr) =: by (1) = ! o(r, 0) sin(nd)do, n >0

m=1

The functions ag(r), a,(r), and b, (r) are readily computable. How do we proceed to infer A, Byum?

Being the eigenfunctions of the (irregular) SL BVP (54) with distinct eigenvalues, for each fixed n
the functions {J,(Anmr)}o°_, are orthogonal with respect to the weight w(r) =ron 0 <r < 1:

1 1
/ Jr ) Ty At ) rdr = S / (T A7) )21 = %(JW(AW)V
0 0
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We must apparently ask: given f(r) on 0 < r <1, can it be expanded in these functions?

Though our SL BVP is irregular, it can be shown that the conclusions of our SL convergence
theorem (Day 7) still hold here: one may expand a “nice” (continuously differentiable) f(r),

[e'e) 2 1
= Condn (AT — C,= —/ rf(r),(Apmr)dr.
3 Ondaan) T, T
This is the Fourier-Bessel series for f(r). Applying this to each of ay(r), a,(r), and b,(r) above,
9 1 1 o pl
Aopp = ——— rag(r)Jo(Aomr)dr :—/ / r,0)Jo(Aomr)rdrdo,
o = i, TR0 = i [ 600100
9 1 9 o1 pl
Apm = —/ 7 (7)) S (Apmr)dr = / / (1, 0) (M) cos(nb)rdrdd
Gt D)2 o T et ) 8 = ey Sy O O ) costnd)
9 1 9 o pl
B, = —/ 70, (1) S (A )dr = / / o(r, 0)J,(Apmr) sin(nd)rdrdf
Tt D)2 o 70T = G G Sy Sy O OB sin(f)

These integrals may be taken over the unit disk D;, and minor adjustments yield C,,;,, Dpm:

B Jp, (r,0)Jo(Nomr)d A B S, (7, 0)Jo(Aomr)dA
o = N Con = 7o (o)
A — 2 [y, 0 Jn(Anm1) cos(nf)dA - 2 [, ¥(1,0) Ju(Anmr) cos(nd)dA (56)
( n+1( nm))2 71'C)‘mn<JnJr1()‘nm))Q
B 2 [p, @ I (Anm1) sin(nd)dA B 2 [, ¥(1,0) Ju(Apmr) sin(nf)dA
B = ( n+1( ) 2 ’ Bnn = WC)‘nm<Jn+1()‘nm))2

)
With these choices of coefficients, (55) does indeed solve our IBVP (53).

Example: Solve the IBVP (53) with
o(r,0) = J5(9.767) cos(30) — 1.5J1(7.02r) sin(6)
P(r,0) = 3Jo(2.4r)
We could cite the integrals (56), but here it’s easier to achieve the IC’s with (55) by inspection:

u(r, 0,t) = J3(9.761) cos(360) cos(9.76¢t) — 1.5.J,(7.02r) sin(#) cos(7.02¢t) + 2i40J0(2.4r) sin(2.4ct)

Warning: this was only so straightforward because 9.76,7.02, and 2.4 are indeed®? among the \,,.

One can see this solution evolve in this Desmos demo.

One typically (outside of very special data) leaves the integrals (56) to a computer.
The series (55) is straining for Desmos. This video shows the evolution of a Gaussian bump.

If interested, you can find the .m MATLAB file which generated this video on Canvas.

320f course, these are rounded. The exact values of the roots A, are irrational (in fact, transcendental).
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Day 21: Elliptic Intro; Harmonic Functions; the Maximum Principle (Lessons 31,32)
How do elliptic problems arise, and what structure do they have?

We now finally turn to elliptic-type PDE’s, foremost among these being Laplace’s equation,

Au = 0. (57)
Elliptic problems are very broad, frequently arising in:

e Steady-state phenomena, e.g. electrostatics (recall Day 1), the equilibrium shape of soap film
surfaces, or setting u; = uy = 0 in wave and heat problems.

e Separating variables in dynamical problems, e.g. the wave, heat, and Schrodinger equations.

Such problems have no initial conditions, only boundary conditions: we pose elliptic BVP’s.

Namely, elliptic equations are typically posed on a domain D C R", paired with conditions on dD:
e Dirichlet boundary conditions (g is a given function on 9D),
ulop = g.

Arise from: fixed temperature (heat) or membrane (waves, soap films); equipotential surfaces
(conductors in electrostatics); infinite potential wells (Schrédinger).

e Neumann boundary conditions,

Arise from: prescribed heat flux (heat), vertical force (waves), surface charge (electrostatics).

ou
(au +58—n> ’8D =g.

Arise from: environmental heat loss (heat), restoring force to variable equilibrium (waves).

e Robin boundary conditions,

These may be “mixed”, imposing different BC types on different portions of dD.

Before solving BVP’s, we see some properties of solutions to (57), called harmonic functions.

Consider the spherical mean Mg[u](Xy) of a 3D* function u at a fixed point X,

1 1
= i [ oois )u(}_f')dA = — u(Xy + Ri)dA.
YESR(Xo

Mpg[u](Xo) 7 Jos,s)
neosy

We have changed variables via y =: Xy + R to integrate over the unit vectors . Differentiating,

d 1 d 1 -
— (M X)) = — — [u(Xy + RNn)|dA = — n- Vu(Xy+ Ri)dA
) = - [l A aA= g [ 8-S+ R

1 / - - 1
= Vu(y) ) -dA = / (Au)dV.
47TR2 yESR(io) ( ) 47TR2 BR(iO)

33The argument and conclusion here carries over nearly exactly to any dimension.
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Since Mg[u](Xo) — u(Xp) as R — 0, this formalizes our intuition that Au quantifies the difference
between u(Xy) and its mean value Mglu|(Xp). In the special case that u is harmonic, we’ve found:

d
7 (Mglu](X9)) =0 = Mglu](Xo) is independent of R.

Hence, the mean value of u on every sphere centered at Xy is the same, Mg[u](Xy) = Mp[u](X))!

Taking the limit R" — 0 yields a structure of harmonic functions called the mean value property,

That is: the mean value of u on any sphere is equal to its value at the center.

Example: The simplest manifestation of the MVP is in 1D harmonic functions, which are linear:
u(x) = Crx 4+ Cy
Here, the MVP simply says that averaging points shifted right and left from xo by R returns u(z),

u(zg) = % [u(zg — R) + u(zo + R)].

u

u(zo + R) A
u(zo) 1

u(zg — R)

The MVP is less trivial beyond 1D: harmonic functions are much broader than linear functions.

Example: The function u(z,y) = 2* — y? is harmonic: see Desmos for an illustration of the MVP.
O

Example: In polar coordinates, 2 — 32 = r?(cos?(#) — sin?(#)) = r? cos(26).
HWS: u(r,0) = r" [Acos(nf) + Bsin(nf)] is harmonic for any integer n (positive, negative®!, or 0).

The MVP for these examples is illustrated in this Desmos demo.
O

A related, but broader, feature of harmonic functions is known as the (strong) maximum principle:

Theorem: If u is harmonic on a connected, bounded domain D C R™ and attains its maximum
value in the interior of D, then u must be constant on D.

34For the MVP to hold, u must be harmonic everywhere in Br(Xy), the ball of radius R centered at %Xy. For n < 0,
u(r,0) = r™ [Acos(nf) + Bsin(n#)] is singular at » = 0, so the MVP need not hold if the ball includes the origin.
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Proof. This follows rather directly from the mean value property. If u attains its maximum at
Xy € D, meaning u(X) < u(Xy) for each X € D, then since u(Xy) is equal to its mean value on any
sphere centered on X, (and contained in D), this means u(X) = u(Xy) on any such sphere. This
forces u to be constant at points near X,. One can apply this reasoning again to these new points

(as they also have w at its maximum) to “spread” the assurance of constancy throughout D*°.
O

An implication: if u is not constant, it must achieve its maximum on the boundary 0D.
You are encouraged to review the MVP Desmos demos again with this implication in mind.
These results are also true of minimum values. This yields an essential feature of common BVP’s:
Theorem: There exists at most one solution to the inhomogeneous Dirichlet problem

Au = f, ulap = g.
Proof. 1f uq, us are two solutions, then u := u; — uy satisfies the homogeneous problem

Au =0, u|ap = 0.

That is, u is harmonic and vanishes on the boundary. Since both the maximum and minimum

values of @ are achieved on the boundary, @ = 0 everywhere in D, and hence u; = us.
O

HW9: This is also true of the corresponding Robin problem. In the Neumann problem, any two
solutions must differ by a constant.

The MP can be strengthened: non-constant harmonic functions never have local extrema.

Intuition:*® if u(z, y) had a local maximum at (zg, yo), we generally expect®” ., u,, < 0 at (xo,yo),
but this is not possible if 0 = Au = gy + Uy,.

35This is a bit hand-wavy: rigorous proof requires some notions from topology, which are beyond this course.
36This is stated for 2D for brevity, but clearly carries over to any dimension
37This is not airtight: maxima can have u,, = Uyy = 0. A bit of complex analysis is needed to fill the gap.
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Day 22: Laplace’s Equation in 2D: Circular geometry (Lessons 33,34)
How can we solve elliptic BVP’s?

We first consider the Dirichlet problem of Laplace’s equation on a 2D disk with radius 1,

1 1
Upr + ~ty + —ugp = Au=0 for 0 <r <1, u(1,6) = g(0) (58)
r r

This has a variety of interpretations. It may describe:

e The equilibrium shape of a soap film spread across a wire that’s bent from a perfectly circular
shape by vertical distance ¢g(f) at each position 6.

e The electric potential inside a circle on which the potential g(f) is known.
e The equilibrium temperature inside a disk with prescribed temperature g(6) on the boundary.

As the PDE is the Helmholtz equation with A = 0, we saw on Day 19 that u(r,0) = R(r)O(0) yields

©,,(0) = Acos(nf) + Bsin(nb),
0=7r’R"+rR —n*R.

HWS8: independent radial solutions are R(r) = r™, r~" for n # 0 and R(r) = 1, In(r) for n = 0.
In applications, regularity at 7 = 0 rules out =™ and In(r), so separable solutions of interest are

un(r,0) = r" [a, cos(nd) + by, sin(nd)] (see Desmos)*®

As the PDE is homogeneous, we ask whether the solution to (58) can be obtained via superposition,

0) < Z r" [ay, cos(nd) + b, sin(nd)] (59)

n=0

That is, we ask whether such a superposition can accommodate the boundary condition g(0):

o0

; lan, cos(nf) + by, sin(nd)]
—0

9(0)

n

Of course, it can: this is the Fourier series of g(6). Recalling (23) (with L = 7), the coefficients are

1 2
apg = % g(e)dea
1 2w
a, = ;/0 g(0) cos(nd)de, n >0, (60)
1 27
b, = —/ g(0) sin(nh)do, n > 0.
T Jo

38Compare with images of actual soap films here and here.
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Example: The shape of a soap film spread across a wire bent according to
g(0) = sin(0) + 0.3 cos(260) — cos(30)
is simply (see Desmos)

u(r, ) = rsin(0) + 0.3r% cos(20) — r* cos(36)

[
We use (60) to express (59) in a simpler form. First: if the disk had radius R, (59) would read
[eS) _
9) = (—) . cos(nf) + b, sin(nf
u(r,0) ; 7 lan, cos(nf) + by, sin(nd)]
with the same formulas (60). Substituting these in,
u(r,0) = Z (%)n [a,, cos(nB) + b, sin(nd)]
n=0
1 2m 1 o0 ran 2m . ‘
=5 g(a)da + — (E) g(a) [cos(na) cos(nf) + sin(na) sin(nd)] da
0 T 0
1 [ [ =T\
=g i gla) |1+ 22 (E) cos(n(a —0))| do
L n=1
1 o | = T\" in(a—0) —in(a—0)
“o ) g(a) 1—|—Z<E) (e +e )| dov
L n=1
_ ! 27T9(04) _1 + i <<Lei(“*9))n + <£€¢(a79))"> do
2 Jo ~\\R R
1 2w r Tei(a—é‘) re—i(a—@)
= o ; 9(@) _1 - R — reila—0) + R— Te—i(oa—@):| dov
1 2 - R? _ 42
- d
27 Jo gla) | R? — 2rRcos(a — 0) + 7“2] “
This final result is known as the Poisson integral formula,
1 2 R2 . T2
f) = — d 1
u(r, 6) 27r/0 9(a) {RQ — 2rRcos(a — 6) +r2} « (61)

While typically not analytically evaluable, this can often be more efficiently computed than (59).

u(r, @) is apparently a weighted average of the boundary values g(«), with weight the quantity in
brackets (the Poisson kernel). The denominator is the squared distance from (r,0) to (R, a):
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Law of cosines:
d*> = R* +r? — 2rRcos(a — 0)

When averaging to compute u(r,#), then, (61) heavily weights nearby points on the boundary.
To visualize the Poisson kernel’s weighting, see this Desmos demo (the sliders are s := %, a := 0).
Example: Compare the outputs of (59) and (61) in Desmos for g(6) given on 0 < 6 < 27 by

-1 0<bl<m
1 T<0<27

9(0) =sgn(f — ) = {
In fact, (61) can (with some difficulty) be evaluated exactly in this particular case, giving

2 1=
u(r,0) =sgn(f — ) + - tan <m)

]

We may also pose elliptic problems on unbounded domains (common in electrostatics). In particular,
we could consider the same problem on the exterior of a disk with radius R,

1 1
U+t + —tgg = Au=0 forr =R, u(R.0) = g(6) (62)

Separable solutions are the same, but we now typically rule out those diverging at » — oo, leaving

Up(r,0) = (%) o [an, cos(nf) + b, sin(nd)]

That is, the solution to (62) is simply (with ag, a,, b, all the same as before, given by (60))

u(r,0) = i (%)_n lan, cos(nd) + b, sin(nd)]

n=0

Reviewing the derivation, Poisson’s formula (61) still clearly holds, but with r, R switching roles.

Finally, perhaps the broadest problem in this vein is posed on an annulus, R < r < R,

1 1 u(Ry,0) = g1(0)
- _ = = <r<
Uy + ,rur + T2u99 Au 0 fOI' Rl =rs RQ’ U(RQ, 0) == 92(9)
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We now have no reason to throw out any separable solutions. Indeed, all will be necessary:

u(r,0) = ag + boIn(r) + Z [(@nr™ + byr ™) cos(nf) + (c,r™ + dyr ") sin(nd)] (64)

n=1

We must now choose the coefficients such that both BC’s are met:

[e.e]

1(0) = u(Ry,0) = ag + by In(Ry) + Z [(a, R} 4 b, Ry™) cos(nf) + (c, R + d, Ry ") sin(6)]
n=1

92(0) = u(Ro,0) = ap + by In(Rs) + Z [(a, RS 4 b, Ry™) cos(nb) + (c, Ry + d,R;™) sin(6)]
n=1

While the coefficients are not directly our a,, b,, ¢,, d,, these are simply Fourier series, giving

2m 2w
ap + bo ln(Rl) = % ; gl(Q)dQ, ag + b() 111(R2> = % . gg(Q)dH,
1 2m 1 2m
an B+ bR = — /0 91(0) cos(nh)do, an R+ 0, R = — /0 92(6) cos(nb)ds, (65)
1 2m 1 2
Ry +d R = — /0 g1(0) sin(nd)do, Ry +d Ry = - /0 g2(0) sin(nd)do.

These constraints may be solved algebraically for the aq, by, an, by, ¢, d,, with which (64) solves (63).

Example: Consider the annulus problem (63) with ¢;(0) = g2(f) = sin(f) at Ry = 1 and Ry = 2.

All of the integrals (65) vanish except the last row for n = 1, giving ag = by = a,, = b, = 0 and
cot+di=1, 2c,+27'y =1 = ¢ =1/3,d =2/3,

so that (64) reads (see Desmos)
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Example: Now take g;(6) =1, g2(f) =2 at Ry =1 and Ry = 4.
All of the integrals (65) vanish except the first row, giving
ag = 1, ap + by 1H(4) =2 — ag =1, by = 1/ln(4),

so that (64) reads (see Desmos)

In(r)
In(4)

u(r,0) =1+
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Day 23: Laplace’s Equation in 3D: Spherical geometry (Lesson 35)
How do we solve problems tailored to spherical geometry?

In 3D settings, spherical geometry is foundational. In spherical coordinates (r, 0, ) defined by
z=rcos(f), x=rsin(f)cos(p), y=rsin(f)sin(p),
one can show that the Laplacian Au = uy, + uy, + u., may be written

2 1 1
Ay = rr — Uy 5 t(60 o . 9N
U= Ut U+ (ugg + cot(8)ug) + "~ Sm2<9)uw

1, 1 1
- — = (sin(# -
(réu,), + " sin(0) (sin(@)ug)g + = sin2(6’)uw’

r2
so that we may approach the Dirichlet problem inside the unit sphere 0 < r <1,
Au=0 for0<r <1, u(1,0,¢) = g(0, ), (66)

via separation of variables. First separating the radial dependence, u(r, 8, p) = R(r)Y (0, ), yields

1, _ 1
—(r*R"Y 0)Y, —5 Y, = 0.
RUE) T Gy CnOYo)e + S Yer

In the usual way, we have
LRy = - (510(0)Ys)y — —Y,,, — k
R ~ sin(A)Y 00 sin?(9)Y 77

for some constant k. Further separating the angular part, Y (0, ¢) = ©(0)P(y) yields

(D//
(sin(0)©") + ksin?(0) = % = m?,

©

for some other constant m?: as seen in 2D, this must be a square integer by 27-periodicity in ¢,
,,(p) = Acos(my) + Bsin(mey).

The © equation, for which we seek nontrivial solutions on 0 < 0 < 7, now reads

0" + cot(0)' + (k - %) 0 =0. (67)

That is, separation of variables has yielded the following radial, azimuthal, and polar ODE’s

0=r’R"+2rR — kR,

0=®" +m?®,

0= 0" +cot()0 + (k- "o
sin?(#)

We have already solved the ® equation, constraining m to be an integer. We turn to the © equation.
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This ODE is best understood by setting x := cos(f) and defining y(x) by y(z(0)) := ©(0), so
O =y -1y =—sin(h)y, 0" = sin®(0)y” — cos(0)y/,

yielding an ODE for y, posed on —1 < z < 1, reading

2
(1—x2)y"—2xy’+(k:— 1m 2)yzO.

— X

We seek nontrivial solutions to this ODE, the general Legendre equation, satisfying |y(£1)| < oco.

This is an irreqular S BVP. We first consider the case m = 0 (corresponding to no ¢ dependence):
(1= — 20y + ky =0,  [y(£1)] < oo

This is Legendre’s equation. As with Bessel’s equation, one may construct power series solutions.

The essential result: only for k = (¢ + 1), ¢ € Z, do there exist nontrivial solutions regular at both
x = %1, and in this case the eigenfunction’s power series terminates, leaving a polynomial.

These eigenfunctions are known as the Legendre polynomials Py(z), given by Rodrigues’ formula

1od o,y

P, is a degree-¢ polynomial with ¢ roots on —1 < z < 1, scaled to Py(1) = 1. The first several are:

Py(x) =1

P(zx) ==z

Py(x) = %(3x2 —1)

Pya) = 5(52° — 30)

Py(z) = é(35x4 — 302? + 3)
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Hence, m = 0 solutions to (67) are Oy(0) = Py(cos(f)). The radial ODE with k — ¢(¢ + 1) reads
rR'+2rR —(({ +1)R =0,

a Cauchy-Euler equation. The ansatz R(r) = r® yields two independent solutions with o« = ¢, —¢—1.

For the interior Dirichlet problem, we disregard the singular solution »—*~! and take Ry(r) = r*.

All azimuthally symmetric separable solutions of interest for (66), then, are
we(r, 0) = r*Py(cos(0))

Superposing these solutions is sufficient for the common case of azimuthal symmetry g(6, ¢) — g(6),

u(r,0,0) = > Agr' Py(cos(0)), (68)

=0

provided that we can match any such boundary function g(0):
g(0) =u(1,0,p) = ZAng cos(f
As the eigenfunctions of a S BVP, the polynomials {Pg(x)}fzo admit an orthogonality relation,

/_ Po(2) Pol(x)dz = 60 / (Pu(e) e = £2+ e

1 -1

Though the SL BVP is irregular, it is once again the case that for any “nice” f(z) on —1 < x <1,
- _ 2 + 1
I) = ZAng(x) <~ / f Pg
=0

This is the Fourier-Legendre series of f(x). We may straightforwardly transform to 6:

0) = Z AyPy(cos(0)) = A= %T+1 Oﬂg(H)Pg(cos(Q)) sin(0)do (69)

With this choice of coefficients, (68) indeed solves (66) under azimuthal symmetry.

Example: Solve the BVP (66) with g(0,¢) = ¢g(0) = 1 — cos(26). Here, u(r,0,¢) may represent
the steady-state temperature of a solid ball with the surface held at this temperature distribution.

We can always resort to computing the integrals (69), but here we can deduce A, by writing

g(f) =1 —cos(20) =1 — (2cos’(f) — 1) = (2 — 227)]

z=cos(0)
4 4 4 4
= (gPo(x) — ng(a:)) }x:cos(Q) = gPO(COS(Q)) — gPQ(COS(Q))7
so the only nonzero A, values are Ay = —As = 4/3, and the solution is
4 4 4 2
u(r,0,p) = 3 §T2P2(COS(0>) =3 57‘2(3 cos?(0) — 1)

Visualize this solution via its level sets (e.g. surfaces of constant temperature) in Desmos here.
O
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Day 24: Laplace’s Equation in 3D: Spherical harmonics (None)
How can we expand arbitrary functions on the sphere?

Having completed the azimuthally symmetric case, we return to the general Legendre equation,

2
(1—2*)y" — 2zy + (ﬁ(ﬁ +1) — l o ) y=0, ly(£1)] < oo.

— 72

Once again, nontrivial BVP solutions exist only for & — ¢(¢ + 1) (as written), and further ¢ > |m].

These eigenfunctions are the associated Legendre polynomials® Py, (z) (of degree ¢ and order m),

Pan() = (1= 2" [P(o)]
_ (1 _ l,2)m/2 dZer

20 U dgltm [(@* = 1),

Im| <¢=0,1,2,...

Our polar solutions are therefore ©y,,(8) = Pp,(cos(6)); a number of these are listed below?.

Py (cos(6)) 0 " 1 2 3

0 1 0 0 0

1 cos(0) sin(6) 0 0

l 2 $(3cos?(0) — 1) 3sin(f) cos(h) 3sin%(0) 0
3 $(5cos*(0) — 3cos(f))  2(5cos?(0) — 1) sin() 15cos(f) sin*(9) 15sin’®(6)

As usual, the associated Legendre polynomials { Py, (2)}72,, enjoy an orthogonality relation,

/_1 Py () P () dz = 01 /_I(me<x))2dx = (261(51;;1_)!m)! ke

We have now found all of the distinct fundamental angular solutions,

Oum(0)P (@) = Pon(cos(9))(A cos(mep) + Bsin(my)), 0<m<?¢=0,1,2,...

It is customary to collate these into the (real) spherical harmonics Y, (0, ), allowing —¢ < m < ¢:

\/%2;; : Ei; m;: Pyjm|(cos(8)) sin(|m[e) m <0

261

+

nm(ea 90) =

Py(cos(0 m=0 (70)

204+1(0—m)!
\/ or (1 m) Pgm(COS(Q)) cos(mep) m > 0

39Caution: Py, (z) is only actually a polynomial for m even. For m odd, it includes a factor of v/1 — x2

40Tn general, —¢ < m < £ is permitted, but in fact Py _,,(x) o< Ppm (), so we have only listed Py, (x) for m > 0:
m (£ —m)!
(L +m)!

Py _p(z) = (=1)™ me( )
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For instance,

Y1100, ¢) = \/gsin(ﬁ) sin(p), Yi0(0,¢) = \/%COS(@), Y1106, ) = \/gsin(e) cos(ip).

These are defined so that they are orthonormal over the unit sphere:

/nm(e 5)Yion (0, 0)dA — / / Vi (0, ) Yien (0, ) sin (0)d0dis — 55461,
S1

This makes it particularly simple to expand an angular function g(@, ) in spherical harmonics:

0o V4
= E E A Yo (0, @) — Ay, = / 9(0,0) Y (0, 0)dA (71)
(=0 m=—/ S1
(.m)=(,0)
am=q.-1) a4.m=(1.0 am=0.1
.m=@,-2) am=@2,-1) 0.m)=@2,0) am=@2,1 .m=Q2,2)
a.m=(3,-3) 0.m=@3.-2) am=@.-1) 0.m=3,0 am=@.1 .m=3,2) a.m=@3.3)
(.m)=(4,-4) am=3@4,-3) 0.m)=4,-2) am=3@,-1) 0.m)=(4,0) am=@.n 0.m=4,2) a.m)=(4,3) 0.m)=(4,4)
uQ’vﬁ@&w
a.m)=(5,-5) (.m)=(5,-4) a.m)=(5,-3) 0.m)=(5,-2) am=G,-1) (.m)=(5,0) am=6.1) 0.m)=(5,2) a.m)=5,3) 0.m)=(5,4) 0.m)=(5,5
. - - . fad
w (‘ » S./ = @ \8/ (&‘W
5 s Gme6 s Gmees Gme6d Gmeen GmeGD  Gmeen  Gmeed  Gmeed Gmeeo  Gmeeo  Gmeeo
-~
N . .
WP LU U’ O @WW
am=q7,-7 0.m)=(@7,-6) am=7,-5) 0.m)=@,-4) am=q7,-3) 0.m=@7,-2) am=a7.-1) 0.m)=(7,0) am=a7.1 0.m=@7,2) a.m=@7.3) 0.m)=@7,4) a.m)=@7.5) .m)=@7,6) am=a.7
v LD P T ) /A - - > ol ~ \
Wh’w&'s&\‘.&\ﬁz@ SRR ORI
f q - - a , ~
te v - S ran
# ] Q '] 2 T v i .
W@L@m VUQ\;*\/-@ i”“’&-‘?‘ ) W
Am=@©,9 0m=@9.-8) am=@©,-7 0.m)=(9,-6) am=0@,-5) (.m)=©,-4) am=0@9,-3) .m=@©,-2) am=@,-1) (.m)=,0) am=@©.1 .m=@©,2) a.m=@9.3) 0.m)=@©,4) 0.m)=(9.5) .m=@©,6) am=0©.7) 0.m=0@,8) 0.m=09.9)
. P - A ) ~ ~ - - £ P o
P ) ) &) &% & ARSI l'
P . 1 N
wiy@EflLouc el vnw
0m=00,-10 0,m=10,9 0m=(0,-8 0,my=10, 0,m)=(10,-6) 0,my=10, 0,m)=(10,-4 0m=0,- 0,m=10,-2> 0m=00,-  4m)=(10.0) 4, m) =10, 0.m=(10.2) 0.m=(0,

Am=(10.4 0Lm=00,5) (M=710.6) CW=007 (M=0108 m=009 LW=0,10
~

“'v" y &Y, &%, ¢ % R )
W PBEELLLLTLeLLBRPLe

This image (by Wikipedia user Twistar48: see it animated here) shows the spherical harmonics Yz, (0, ¢) as
distortions of the sphere’s radius at each (6, ¢).
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Spherical harmonics are an essential tool for parameterizing spherical functions in many fields: as-
tronomy, cosmology, geodesy, electrostatics, quantum mechanics, chemistry, computer graphics, etc.

Finally, combining with the (interior) radial solution R,(r) = r¢ yields all separable solutions,

Ugm('f’, 67 90) = RZ(T>}/€m(97 ()0) = 71%7?1(97 @)7

and we seek the solution to (66) via superposition,

u(r,0,¢) = Z Z A Yo (0, 0) (72)

(=0 m=—/

Matching the BC at r = 1, this indeed solves (66) if A, are chosen according to (71).
Example: Solve the BVP (66) with g(6, ) = 1 — cos(26) + sin(26) sin() — sin*(6) cos(f) cos(2¢p).

We seek to express g(6, ¢) in terms of our angular solutions. We observe the ¢ dependence of each
term to infer m and compare the 6 dependence to the appropriate column in the table of P, (cos(0)).

In the previous example, we saw that 1 — cos(20) gives rise to u;(r,0, @) = 3 — 2r*(3cos?() — 1).

The term sin(26) sin(y) has m = 1, and sin(260) o< Py 1(cos(f)). Hence, this gives rise to us(r, 8, ¢) =
2 sin(260) sin(yp).

The term sin?(6 ) 0s(6) cos(2p) has m = 2, and sin?(#) cos() o< Psz(cos(f)). Hence, this gives rise
to us(r, 0, ¢) = r3sin?(9) cos() cos(2¢). Combmmg,

r2(3cos?(0) — 1) + r*sin(26) sin(p) — r° sin*(#) cos(6) cos(2¢)

Wl
|
Wl N

U(T,Q,QO) =Up + Uy — U3z =

Visualize this solution via its level sets (e.g. surfaces of constant temperature) in Desmos here.
O

One can solve Dirichlet problems on the exterior of a ball, or in the shell between two spheres,

precisely as in 2D: include all radial solutions 7%, 7=¢=! (shell) or just the decaying r—*~! (exterior).
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Day 25: Spherical waves (None)
How do 3D waves propagate in spherical geometry?

We now consider the analogue to the circular drumhead IBVP in 3D, posed inside the unit sphere:

Ut = AAu,
u(l,0,p,t) = 0,
U(T‘, 67 @, 0) = ¢(T7 87 QO),
ut(T707§070) = ¢(T707§0)7 0<r<l1.

(73)

Similar IBVP’s describe sound or EM waves from a concentrated source, or seismic waves through
the earth?'. As in 2D, separating u(r,0,,t) = U(r,0,¢)T(t) yields the Helmholtz equation,

T“_&__AQ . AU+ XU = 0, U(1,0,¢) =0,
T U T" + ANT = 0.

As usual for waves, the T equation yields temporal oscillations,
T(t) = Acos(Act) + Bsin(Act).
Spatially, we have an elliptic BVP. We’ve now seen that elliptic BVP’s with zero BC often only

admit u = 0*?: the Helmholtz eigenvalue problem seeks those special values of \ yielding otherwise.

In spherical coordinates, our elliptic BVP reads

1
_(TZUT)T +

r2

1

(in@)Uo)o + 552

S U AU =0 U(1,6,0) =0
T2Sin(9> §0§0+ 9 ( 9 7%0)

We now proceed in much the same way as Day 23, separating U(r, 6, ¢) = R(r)Y (0, ¢) to obtain

1, 1 1
Z(r2R) + \2p2? in(0Y, - Y. =0
RUTR) AT+ sin(G)Y(Sm( JYo)o + sm2(0)Y F
1 2 I/ 2.2 1 :
; R ) + X sm(e)y(sm( )¥o)o sin?(0)y ¢

for some constant k. We now note that the angular problem is precisely that seen on Days 23-24,
sin() (sin(0)Yy)g + ksin®(0)Y + Y, = 0.
Nontrivial solutions require k = (¢4 1): they are the spherical harmonics Yy, (6, ¢) defined in (70).

We may now turn to a new problem, the radial equation:
R’ +2rR + (\*r* —{({ +1))R = 0, R(1) =0, |R(0)| < oo. (74)
This is yet another irregular SL. BVP. Setting = := Ar and R(r) =: y(z(r)), the ODE reads

o2y’ + 2xy' + (2® — L0+ 1))y =0 (75)

41 Exactly as written, this prototype problem describes, say, sound in a closed spherical chamber.
42This feature is what gave us uniqueness results.
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This is reminiscent of Bessel’s equation. Indeed, setting y(x) =: , so that
, w s, woow 3w
Y=—F7="532 VY =—F=""Z3nt 155
N r a3 4ad/

this ODE (multiplied by /x) now reads

1\ 2
wa"—i—xw—f—( <€—|—§))w:0.

This is Bessel’s equation with order o = £ + %: w is a linear combination of Jy11/2, Yy41/2, meaning

Je+1/2(1’) Yz+1/2($)
B
vi T

Due to the present context, solutions to (75) are dubbed spherical Bessel functions:

y(z) = A

=4/ 21J£+1 s2(x) order £ spherical Bessel function of the first kind,

=4/ 21 741/2(x) order £ spherical Bessel function of the second kind.

Note that g, diverges (and j, is finite) at x — 0. Recalling the definition of J,(z), consider®?

. T 2m+1/2 B o (_1)m -
O %Jlm Y 2xzm' Fm—|—3/2) ( ) _\/7?7;:()22m+1-m!-F(m+3/2)x '

Noting that T'(3) = /7" and T(m + 2) = (m + 3) - (m — 3)--- 2 - 1. T'(5), the denominator is

2m(2m —2)---4-2][Cm +1)(2m —1)---3-1]y/7
(2m+ 1)/

That is, we apparently have the surprisingly simple identity

]O(m) _ (_1)m ZE2m _ Sin(.ﬁE)'

¢ (2m + 1)! x

Recall from HWS that
—n -n 1 d -n —(n
(" (@)Y = =5 " (), () =~  (a)

One may readily check that j, inherits this identity. Iterating yields Rayleigh’s formula:

je(@) = (—2)" (1£>€ Singfzv)

T dx

43Recall that the Gamma function is a generalization of the factorial to non-integers, I'(x) := fooo t*=le~tdt.
“This is the Gaussian area [*_e™* dz = /7 in disguise.

45While it is less useful to us, one may also find y,(z) = —(—x)* ( 7
x dx T

1 d) cos(z)
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This may be used to generate any j, desired, e.g.

Jo(z) = w
() = sn;(f) B cos;U(x)
Ja() = (% —~ 1> smy) _ 36(;82@)

It is clear from these expressions that j, is oscillatory— the first several are plotted below.

Je()
1 4

Kwé@%%hx

20

Returning to our radial BVP (74): ODE solutions finite at  — 0 are apparently R(r) = j,(Ar).
Imposing R(1) = 0, nontrivial solutions are Ry (r) = js(Awr), with Ay the kth positive root ot j,.

These still do not admit an analytical formula in general, but they are again well-tabulated.

l
0 1 2 3 4
3.14 449 576 6.99 818
6.28 7.73 9.10 1042 11.70
942 1090 12.32 13.70 15.04
12,57 14.07 15.51 16.92 18.30
15.71 17.22 18.69 20.12 21.53

Cﬂ»-lkoal\:)»ag

It should come as no surprise that the functions {js(Agr)}32; admit an orthogonality relation,

1 1
. . . Onk , .
/ Gekr)je(Nenr)r?dr = 5nk/ (jeexr))?r2dr = Tk(ﬂ—&-l(/\ﬂk))Qa
0 0

and once again one may expand any “nice” (continuously differentiable) f(r) on 0 <r <1,

2 ' 2 .
m/o r2f(r)jear)dr.

Putting everything together, all spherical-separable solutions to the BVP in (73) are
ek (7, 0,0, 1) = Jo(Aekr)Yem (0, 0) [Avmis c0s(Aact) + Bem sin(Aect)]

fr) =) Cridar) < Cp=

k=1
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These are the fundamental modes of spherical waves. A general solution may be expanded

o9 l [eS)
u(r,0,p,t) = Z Z ng(/\gkr)ng(H, ©) [Aemi cos(Agpct) + Bppmp sin(Aggct)] (76)

£=0 m=—{ k=1

One should convince themselves that this solves the IBVP (73) provided that one takes®

2
A = ——=—— r.0. 0V (M) Yo (0. 0)dV.
T G Q) Js, ¢ 8, )l r)Yem 6, 0)
2
By = , r.0, 0V o) Yo (6, 0)dV 7
k= G a2 Bld’( ©)Je( ek )Yem (0, ) (77)

Conceptually, this is the result of expanding ¢(r, 0, ¢) (or 1) in the spherical harmonics Y7, at each
fixed r, and then expanding the resulting expansion coefficients (functions of r) in j,(Agr).

Example: Solve the IBVP (73) with

B(r, 0, p) = 72(12.327) sin®(6) cos(2¢) — 0.45;(4.497) cos(6)
W(r, 0, p) = sin(2nr)/r

As usual, one could resort to the integrals (77) in general, but we can also read off the appropriate
coefficients by recognizing each term as the spatial part of a separable solution:

32(12.327) sin®(6) cos(2) o ja(Xa37) Yoo

)22
J1(4.497) cos(0) o j1(A1.17) Y7 0(
sin(27r) /1 o jo(Xo27) Yo,0(

Y

0, ¢
6, ¢)
0, ¢

Appending the appropriate temporal components for each separable solution, we have

in(27r) sin(2nct
W0, 0,1) = j»(12.325) sin(9) cos(20) cos(12.32¢t) — 0.4 (4.49r) cos(8) cos(4.49¢t) + SRETT) sin(2mel)

T 2me

Caution: in order for this to be so straightforward, the order of j, must match the degree of Yy,
in each term, and the coefficient inside j, (the 12.32, 4.49, and 27 above) must be a root of j,.
O

46 B, denotes the unit ball in R3.
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Day 26: Inhomogeneous Problems: Green’s Functions (Lesson 36)
How can we handle sources in elliptic equations?

The prototypical inhomogeneous elliptic PDE is the Poisson equation (posed on a domain D C R")
Au=f,

for some given function f on D. Frequently, f is a source of some kind:
e In steady-state temperature, — f is a heat source (e.g. a space heater in a room).
e In steady-state damped waves, f may be a (downward) force applied to the string/membrane.
e In electrostatics, — f is the charge density sourcing the electric potential.

Indeed, a taut membrane propagating damped waves in the presence of gravity has wave equation

Ut = A Au — pug — g,
so that the equilibrium shape of the membrane (where uy = u; = 0) satisfies

g

A powerful idea is to consider f a collection of impulses at each point in D:

/f 5(% — §)dV

This leads us to seek a Green’s function G (X, X)), a response to an impulse at Xy € D, solving

Au = §(X — Xp).
By superposition: given such a G, a solution to Au = f will simply be

/ F(7)G(Z,3)dv

Typically, however, we don’t want just any solution: we seek the unique solution to a BVP, say
Au=f  ulop=g. (78)

How can we tailor the Green’s function G(X,Xy) to particular BC’s? Begin by observing

(Vo) - dA = /D (GAG + T - To)dV

oD

for any functions ¢, 1) on D. Reversing the roles of ¢, 1 and subtracting yields Green’s second identity,

(e 0
[ was—oanav = [ (v32-63") s
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Now let us take 1(¥) = u(¥) solving (78) and ¢(y) = G(¥,Xo) (with X, fixed). The above reads

| i -0 - g = [ (565t aa

y

S\ Lo N oG ou
— u(Xp) = /yeD G(y,Xo) f(y)dV + /BD (g% G@n) dA

This is a consistency condition for the solution to (78) with any Green’s function. If we choose the
Green’s function G(X,Xy) to itself have zero Dirichlet boundary conditions, i.e. to solve the BVP

AG =6§FX—%), Glop =0, (79)

then this consistency condition reduces’” to an explicit formula for the u solving (78):

u@) = [ eI+ [ a0 (50)

y€oD

That is: if one can somehow solve (79) for G, then one can solve any inhomogeneous problem (78).
The Green’s function G of interest is a property of the homogeneous PDE and the geometry of D.
Even for the Laplacian, constructing G in a given geometry is rather nontrivial.

Perhaps the simplest geometry is the 2D limiting case D — R2. In this limit, boundary effects are
negligible, so we might seek an isotropic impulse response, depending only on [|X — X;||.

Away from Xy, G(X, Xp) should satisfy AG = 0. From Day 22, the only isotropic solutions are
G(X,%X) = A+ BIn(|[X — Xol|)

What constraint is imposed by the requirement AG = 6(X — X;)? At the very least,

1:/ 5(% — %o)dA = AG(%,%,)dA
D1 (Xo)

D1 (Xo)
. Sl o B
= n- VG(X, Xo)dS = #ds = 27TB,
$1(Ro) 51(%o) [X — Xo|

or B = % Being arbitrary, we may set A = 0, so that the full-space Green’s function in 2D is

oo 1 I
G(%,%) = 5 In([|X — %oll) (81)

By (80), a solution to the Poisson equation on R? is

W® =~ [ fFm(E - FdA

27 yER?

Generally, it is much more challenging to find G on a domain other than a full R".

4TWe've used the nontrivial fact that G(X,¥) is symmetric, so G(%,¥) = G(¥,%), when G is defined by (79).
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Under sufficient symmetry: the method of images combines the full-space impulse response (81) for
the given Xy € D with the responses for a collection of other points X; ¢ D to match the BC.

Consider D = Dy, the unit disk in R?. Given X, € D;, we seek an X; ¢ D; with the property that

~Ni—= = 1 — — 1 — = 1 ||i_i0||
G(%,%0) := o In([|X = Xol|) — o In([|IX = %,]]) = gln<m

satisfies that G(X, %) is constant for ¥ € Sy (the boundary unit sphere).

[X=Xol|
[[X=%1]]

to be independent of X € 5.

That is, we require the ratio

It is not obvious that such an X; exists, but if it does, it must share Xy’s polar coordinate 6.

Moreover, comparing when X sits at angles 6y and 6, + 7, the radial coordinates ro, 1 must satisfy

1—7“() 1+7’0 1
= T1T = —
7'1—1 1+7"1 ! To

We have therefore found: if a working X; exists, it must be X; = 7%}?0. This identification gives
0

~ — - B )
G(i, io) = iln <|HX—XOH> _ i1n<7” 2rro COS(Q 90) 4 7,0)’

~ or |X — %5{’0” 4 r? —2= 005(9—90)+%

with (r,6) the polar coordinates of X. For r = 1, this indeed reduces to a constant, In(rg) /4.

Subtracting this off, we've found the Green’s function satisfying G(X,X,) = 0 for X € Sy:

1 X — X 1 22 — 2
G(X,%)) = -—1In (M> = — ln( L rrocos(d = bo) + g ) (see Desmos)

2m ||roX — %5{'0” 47 rar? — 2rrgcos(6 — 6p) + 1

Note this is manifestly symmetric under (r, ) <> (rg, 6y). To fully implement (80), we must compute

oG ., 1 [ r —rocos(f — 6p) ro(r7mo — cos(6 — 6y)) }

W(X’ Xo) = %

r2 —2rrgcos(6 — 0g) +ré  r3r2 —2rrgcos(6 — 6p) + 1

This is quite the mess, but it simplifies quite dramatically for » = 1, which is what is needed:

%
or

1 1—r?

o1 271 — 2rg cos(f — 6y) + 12
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https://www.desmos.com/3d/ilap0nvwqw

Writing y — X’ = (1/,6') in (80), the solution to (78) for D = D; C R? and BC u(1,6) = g(0) is

r2 — 2rr' cos(0 — 0') + 1”2 ) 1 [ 1—172

1
0) = — " 91 dA + — 0’ do’
u(r, ) A7 /;(»/eDl AGRLY H(T/2T2 —2rr'cos(0 — 0') + 1 + 27 /o 9(?)

1 —2rcos(0 —0) +r?
The first of these integrals matches the PDE inhomogeneity f, while the latter matches the BC g¢.
Indeed, one might recognize the latter integral as the (R = 1) Poisson integral formula from Day 22.
Example: One can see the output of the above formula (and compare to the homogeneous solution)
for g(0) = cos(30) and f(r,0) = A (constant) in this Desmos demo. Physically, one should have in

mind a membrane under gravity (mentioned above).
O
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https://www.desmos.com/3d/9mkutvgybc

